clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name lemon.c -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 2 -pic-is-pie -fno-delete-null-pointer-checks -mframe-pointer=all -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -ffloat16-excess-precision=fast -fbfloat16-excess-precision=fast -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fdebug-compilation-dir=/builds/wireshark/wireshark/build -fcoverage-compilation-dir=/builds/wireshark/wireshark/build -resource-dir /usr/lib/llvm-18/lib/clang/18 -isystem /usr/include/glib-2.0 -isystem /usr/lib/x86_64-linux-gnu/glib-2.0/include -D G_DISABLE_DEPRECATED -D G_DISABLE_SINGLE_INCLUDES -D WS_DEBUG -D WS_DEBUG_UTF_8 -I /builds/wireshark/wireshark/build -I /builds/wireshark/wireshark -I /builds/wireshark/wireshark/include -D _GLIBCXX_ASSERTIONS -internal-isystem /usr/lib/llvm-18/lib/clang/18/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/14/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/builds/wireshark/wireshark/= -fmacro-prefix-map=/builds/wireshark/wireshark/build/= -fmacro-prefix-map=../= -Wno-format-truncation -Wno-format-nonliteral -Wno-pointer-sign -std=gnu11 -ferror-limit 19 -fvisibility=hidden -fwrapv -fstrict-flex-arrays=3 -stack-protector 2 -fstack-clash-protection -fcf-protection=full -fgnuc-version=4.2.1 -fskip-odr-check-in-gmf -fexceptions -fcolor-diagnostics -analyzer-output=html -dwarf-debug-flags /usr/lib/llvm-18/bin/clang -### --analyze -x c -D G_DISABLE_DEPRECATED -D G_DISABLE_SINGLE_INCLUDES -D WS_DEBUG -D WS_DEBUG_UTF_8 -I /builds/wireshark/wireshark/build -I /builds/wireshark/wireshark -I /builds/wireshark/wireshark/include -isystem /usr/include/glib-2.0 -isystem /usr/lib/x86_64-linux-gnu/glib-2.0/include -fvisibility=hidden -fexcess-precision=fast -fstrict-flex-arrays=3 -fstack-clash-protection -fcf-protection=full -D _GLIBCXX_ASSERTIONS -fstack-protector-strong -fno-delete-null-pointer-checks -fno-strict-overflow -fno-strict-aliasing -fexceptions -Wno-format-truncation -Wno-format-nonliteral -fdiagnostics-color=always -Wno-pointer-sign -fmacro-prefix-map=/builds/wireshark/wireshark/= -fmacro-prefix-map=/builds/wireshark/wireshark/build/= -fmacro-prefix-map=../= -std=gnu11 -fPIE /builds/wireshark/wireshark/tools/lemon/lemon.c -o /builds/wireshark/wireshark/sbout/2024-09-02-100310-3897-1 -Xclang -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /builds/wireshark/wireshark/sbout/2024-09-02-100310-3897-1 -x c /builds/wireshark/wireshark/tools/lemon/lemon.c
1 | /* |
2 | ** This file contains all sources (including headers) to the LEMON |
3 | ** LALR(1) parser generator. The sources have been combined into a |
4 | ** single file to make it easy to include LEMON in the source tree |
5 | ** and Makefile of another program. |
6 | ** |
7 | ** The author of this program disclaims copyright. |
8 | */ |
9 | #include <stdio.h> |
10 | #include <stdarg.h> |
11 | #include <string.h> |
12 | #include <ctype.h> |
13 | #include <stdlib.h> |
14 | #include <assert.h> |
15 | |
16 | #define ISSPACE(X)((*__ctype_b_loc ())[(int) (((unsigned char)(X)))] & (unsigned short int) _ISspace) isspace((unsigned char)(X))((*__ctype_b_loc ())[(int) (((unsigned char)(X)))] & (unsigned short int) _ISspace) |
17 | #define ISDIGIT(X)((*__ctype_b_loc ())[(int) (((unsigned char)(X)))] & (unsigned short int) _ISdigit) isdigit((unsigned char)(X))((*__ctype_b_loc ())[(int) (((unsigned char)(X)))] & (unsigned short int) _ISdigit) |
18 | #define ISALNUM(X)((*__ctype_b_loc ())[(int) (((unsigned char)(X)))] & (unsigned short int) _ISalnum) isalnum((unsigned char)(X))((*__ctype_b_loc ())[(int) (((unsigned char)(X)))] & (unsigned short int) _ISalnum) |
19 | #define ISALPHA(X)((*__ctype_b_loc ())[(int) (((unsigned char)(X)))] & (unsigned short int) _ISalpha) isalpha((unsigned char)(X))((*__ctype_b_loc ())[(int) (((unsigned char)(X)))] & (unsigned short int) _ISalpha) |
20 | #define ISUPPER(X)((*__ctype_b_loc ())[(int) (((unsigned char)(X)))] & (unsigned short int) _ISupper) isupper((unsigned char)(X))((*__ctype_b_loc ())[(int) (((unsigned char)(X)))] & (unsigned short int) _ISupper) |
21 | #define ISLOWER(X)((*__ctype_b_loc ())[(int) (((unsigned char)(X)))] & (unsigned short int) _ISlower) islower((unsigned char)(X))((*__ctype_b_loc ())[(int) (((unsigned char)(X)))] & (unsigned short int) _ISlower) |
22 | |
23 | |
24 | #ifndef __WIN32__ |
25 | # if defined(_WIN32) || defined(WIN32) |
26 | # define __WIN32__ |
27 | # endif |
28 | #endif |
29 | |
30 | #ifdef __WIN32__ |
31 | #ifdef __cplusplus |
32 | extern "C" { |
33 | #endif |
34 | extern int access(const char *path, int mode); |
35 | #ifdef __cplusplus |
36 | } |
37 | #endif |
38 | #else |
39 | #include <unistd.h> |
40 | #endif |
41 | |
42 | /* #define PRIVATE static */ |
43 | #define PRIVATE |
44 | |
45 | #ifdef TEST |
46 | #define MAXRHS1000 5 /* Set low to exercise exception code */ |
47 | #else |
48 | #define MAXRHS1000 1000 |
49 | #endif |
50 | |
51 | extern void memory_error(); |
52 | static int showPrecedenceConflict = 0; |
53 | static char *msort(char*,char**,int(*)(const char*,const char*)); |
54 | |
55 | /* |
56 | ** Compilers are getting increasingly pedantic about type conversions |
57 | ** as C evolves ever closer to Ada.... To work around the latest problems |
58 | ** we have to define the following variant of strlen(). |
59 | */ |
60 | #define lemonStrlen(X)((int)strlen(X)) ((int)strlen(X)) |
61 | |
62 | /* |
63 | ** Compilers are starting to complain about the use of sprintf() and strcpy(), |
64 | ** saying they are unsafe. So we define our own versions of those routines too. |
65 | ** |
66 | ** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and |
67 | ** lemon_addtext(). The first two are replacements for sprintf() and vsprintf(). |
68 | ** The third is a helper routine for vsnprintf() that adds texts to the end of a |
69 | ** buffer, making sure the buffer is always zero-terminated. |
70 | ** |
71 | ** The string formatter is a minimal subset of stdlib sprintf() supporting only |
72 | ** a few simply conversions: |
73 | ** |
74 | ** %d |
75 | ** %s |
76 | ** %.*s |
77 | ** |
78 | */ |
79 | static void lemon_addtext( |
80 | char *zBuf, /* The buffer to which text is added */ |
81 | int *pnUsed, /* Slots of the buffer used so far */ |
82 | const char *zIn, /* Text to add */ |
83 | int nIn, /* Bytes of text to add. -1 to use strlen() */ |
84 | int iWidth /* Field width. Negative to left justify */ |
85 | ){ |
86 | if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){} |
87 | while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; } |
88 | if( nIn==0 ) return; |
89 | memcpy(&zBuf[*pnUsed], zIn, nIn); |
90 | *pnUsed += nIn; |
91 | while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; } |
92 | zBuf[*pnUsed] = 0; |
93 | } |
94 | static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){ |
95 | int i, j, k, c; |
96 | int nUsed = 0; |
97 | const char *z; |
98 | char zTemp[50]; |
99 | str[0] = 0; |
100 | for(i=j=0; (c = zFormat[i])!=0; i++){ |
101 | if( c=='%' ){ |
102 | int iWidth = 0; |
103 | lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); |
104 | c = zFormat[++i]; |
105 | if( ISDIGIT(c)((*__ctype_b_loc ())[(int) (((unsigned char)(c)))] & (unsigned short int) _ISdigit) || (c=='-' && ISDIGIT(zFormat[i+1])((*__ctype_b_loc ())[(int) (((unsigned char)(zFormat[i+1])))] & (unsigned short int) _ISdigit)) ){ |
106 | if( c=='-' ) i++; |
107 | while( ISDIGIT(zFormat[i])((*__ctype_b_loc ())[(int) (((unsigned char)(zFormat[i])))] & (unsigned short int) _ISdigit) ) iWidth = iWidth*10 + zFormat[i++] - '0'; |
108 | if( c=='-' ) iWidth = -iWidth; |
109 | c = zFormat[i]; |
110 | } |
111 | if( c=='d' ){ |
112 | int v = va_arg(ap, int)__builtin_va_arg(ap, int); |
113 | if( v<0 ){ |
114 | lemon_addtext(str, &nUsed, "-", 1, iWidth); |
115 | v = -v; |
116 | }else if( v==0 ){ |
117 | lemon_addtext(str, &nUsed, "0", 1, iWidth); |
118 | } |
119 | k = 0; |
120 | while( v>0 ){ |
121 | k++; |
122 | zTemp[sizeof(zTemp)-k] = (v%10) + '0'; |
123 | v /= 10; |
124 | } |
125 | lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth); |
126 | }else if( c=='s' ){ |
127 | z = va_arg(ap, const char*)__builtin_va_arg(ap, const char*); |
128 | lemon_addtext(str, &nUsed, z, -1, iWidth); |
129 | }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){ |
130 | i += 2; |
131 | k = va_arg(ap, int)__builtin_va_arg(ap, int); |
132 | z = va_arg(ap, const char*)__builtin_va_arg(ap, const char*); |
133 | lemon_addtext(str, &nUsed, z, k, iWidth); |
134 | }else if( c=='%' ){ |
135 | lemon_addtext(str, &nUsed, "%", 1, 0); |
136 | }else{ |
137 | fprintf(stderrstderr, "illegal format\n"); |
138 | exit(1); |
139 | } |
140 | j = i+1; |
141 | } |
142 | } |
143 | lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); |
144 | return nUsed; |
145 | } |
146 | static int lemon_sprintf(char *str, const char *format, ...){ |
147 | va_list ap; |
148 | int rc; |
149 | va_start(ap, format)__builtin_va_start(ap, format); |
150 | rc = lemon_vsprintf(str, format, ap); |
151 | va_end(ap)__builtin_va_end(ap); |
152 | return rc; |
153 | } |
154 | static void lemon_strcpy(char *dest, const char *src){ |
155 | while( (*(dest++) = *(src++))!=0 ){} |
156 | } |
157 | static void lemon_strcat(char *dest, const char *src){ |
158 | while( *dest ) dest++; |
159 | lemon_strcpy(dest, src); |
160 | } |
161 | |
162 | |
163 | /* a few forward declarations... */ |
164 | struct rule; |
165 | struct lemon; |
166 | struct action; |
167 | |
168 | static struct action *Action_new(void); |
169 | static struct action *Action_sort(struct action *); |
170 | |
171 | /********** From the file "build.h" ************************************/ |
172 | void FindRulePrecedences(struct lemon*); |
173 | void FindFirstSets(struct lemon*); |
174 | void FindStates(struct lemon*); |
175 | void FindLinks(struct lemon*); |
176 | void FindFollowSets(struct lemon*); |
177 | void FindActions(struct lemon*); |
178 | |
179 | /********* From the file "configlist.h" *********************************/ |
180 | void Configlist_init(void); |
181 | struct config *Configlist_add(struct rule *, int); |
182 | struct config *Configlist_addbasis(struct rule *, int); |
183 | void Configlist_closure(struct lemon *); |
184 | void Configlist_sort(void); |
185 | void Configlist_sortbasis(void); |
186 | struct config *Configlist_return(void); |
187 | struct config *Configlist_basis(void); |
188 | void Configlist_eat(struct config *); |
189 | void Configlist_reset(void); |
190 | |
191 | /********* From the file "error.h" ***************************************/ |
192 | void ErrorMsg(const char *, int,const char *, ...); |
193 | |
194 | /****** From the file "option.h" ******************************************/ |
195 | enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR, |
196 | OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR}; |
197 | struct s_options { |
198 | enum option_type type; |
199 | const char *label; |
200 | char *arg; |
201 | const char *message; |
202 | }; |
203 | int OptInit(char**,struct s_options*,FILE*); |
204 | int OptNArgs(void); |
205 | char *OptArg(int); |
206 | void OptErr(int); |
207 | void OptPrint(void); |
208 | |
209 | /******** From the file "parse.h" *****************************************/ |
210 | void Parse(struct lemon *lemp); |
211 | |
212 | /********* From the file "plink.h" ***************************************/ |
213 | struct plink *Plink_new(void); |
214 | void Plink_add(struct plink **, struct config *); |
215 | void Plink_copy(struct plink **, struct plink *); |
216 | void Plink_delete(struct plink *); |
217 | |
218 | /********** From the file "report.h" *************************************/ |
219 | void Reprint(struct lemon *); |
220 | void ReportOutput(struct lemon *); |
221 | void ReportTable(struct lemon *, int, int); |
222 | void ReportHeader(struct lemon *); |
223 | void CompressTables(struct lemon *); |
224 | void ResortStates(struct lemon *); |
225 | |
226 | /********** From the file "set.h" ****************************************/ |
227 | void SetSize(int); /* All sets will be of size N */ |
228 | char *SetNew(void); /* A new set for element 0..N */ |
229 | void SetFree(char*); /* Deallocate a set */ |
230 | int SetAdd(char*,int); /* Add element to a set */ |
231 | int SetUnion(char *,char *); /* A <- A U B, thru element N */ |
232 | #define SetFind(X,Y)(X[Y]) (X[Y]) /* True if Y is in set X */ |
233 | |
234 | /********** From the file "struct.h" *************************************/ |
235 | /* |
236 | ** Principal data structures for the LEMON parser generator. |
237 | */ |
238 | |
239 | typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean; |
240 | |
241 | /* Symbols (terminals and nonterminals) of the grammar are stored |
242 | ** in the following: */ |
243 | enum symbol_type { |
244 | TERMINAL, |
245 | NONTERMINAL, |
246 | MULTITERMINAL |
247 | }; |
248 | enum e_assoc { |
249 | LEFT, |
250 | RIGHT, |
251 | NONE, |
252 | UNK |
253 | }; |
254 | struct symbol { |
255 | const char *name; /* Name of the symbol */ |
256 | int index; /* Index number for this symbol */ |
257 | enum symbol_type type; /* Symbols are all either TERMINALS or NTs */ |
258 | struct rule *rule; /* Linked list of rules of this (if an NT) */ |
259 | struct symbol *fallback; /* fallback token in case this token doesn't parse */ |
260 | int prec; /* Precedence if defined (-1 otherwise) */ |
261 | enum e_assoc assoc; /* Associativity if precedence is defined */ |
262 | char *firstset; /* First-set for all rules of this symbol */ |
263 | Boolean lambda; /* True if NT and can generate an empty string */ |
264 | int useCnt; /* Number of times used */ |
265 | char *destructor; /* Code which executes whenever this symbol is |
266 | ** popped from the stack during error processing */ |
267 | int destLineno; /* Line number for start of destructor. Set to |
268 | ** -1 for duplicate destructors. */ |
269 | char *datatype; /* The data type of information held by this |
270 | ** object. Only used if type==NONTERMINAL */ |
271 | int dtnum; /* The data type number. In the parser, the value |
272 | ** stack is a union. The .yy%d element of this |
273 | ** union is the correct data type for this object */ |
274 | int bContent; /* True if this symbol ever carries content - if |
275 | ** it is ever more than just syntax */ |
276 | /* The following fields are used by MULTITERMINALs only */ |
277 | int nsubsym; /* Number of constituent symbols in the MULTI */ |
278 | struct symbol **subsym; /* Array of constituent symbols */ |
279 | }; |
280 | |
281 | /* Each production rule in the grammar is stored in the following |
282 | ** structure. */ |
283 | struct rule { |
284 | struct symbol *lhs; /* Left-hand side of the rule */ |
285 | const char *lhsalias; /* Alias for the LHS (NULL if none) */ |
286 | int lhsStart; /* True if left-hand side is the start symbol */ |
287 | int ruleline; /* Line number for the rule */ |
288 | int nrhs; /* Number of RHS symbols */ |
289 | struct symbol **rhs; /* The RHS symbols */ |
290 | const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */ |
291 | int line; /* Line number at which code begins */ |
292 | const char *code; /* The code executed when this rule is reduced */ |
293 | const char *codePrefix; /* Setup code before code[] above */ |
294 | const char *codeSuffix; /* Breakdown code after code[] above */ |
295 | struct symbol *precsym; /* Precedence symbol for this rule */ |
296 | int index; /* An index number for this rule */ |
297 | int iRule; /* Rule number as used in the generated tables */ |
298 | Boolean noCode; /* True if this rule has no associated C code */ |
299 | Boolean codeEmitted; /* True if the code has been emitted already */ |
300 | Boolean canReduce; /* True if this rule is ever reduced */ |
301 | Boolean doesReduce; /* Reduce actions occur after optimization */ |
302 | Boolean neverReduce; /* Reduce is theoretically possible, but prevented |
303 | ** by actions or other outside implementation */ |
304 | struct rule *nextlhs; /* Next rule with the same LHS */ |
305 | struct rule *next; /* Next rule in the global list */ |
306 | }; |
307 | |
308 | /* A configuration is a production rule of the grammar together with |
309 | ** a mark (dot) showing how much of that rule has been processed so far. |
310 | ** Configurations also contain a follow-set which is a list of terminal |
311 | ** symbols which are allowed to immediately follow the end of the rule. |
312 | ** Every configuration is recorded as an instance of the following: */ |
313 | enum cfgstatus { |
314 | COMPLETE, |
315 | INCOMPLETE |
316 | }; |
317 | struct config { |
318 | struct rule *rp; /* The rule upon which the configuration is based */ |
319 | int dot; /* The parse point */ |
320 | char *fws; /* Follow-set for this configuration only */ |
321 | struct plink *fplp; /* Follow-set forward propagation links */ |
322 | struct plink *bplp; /* Follow-set backwards propagation links */ |
323 | struct state *stp; /* Pointer to state which contains this */ |
324 | enum cfgstatus status; /* used during followset and shift computations */ |
325 | struct config *next; /* Next configuration in the state */ |
326 | struct config *bp; /* The next basis configuration */ |
327 | }; |
328 | |
329 | enum e_action { |
330 | SHIFT, |
331 | ACCEPT, |
332 | REDUCE, |
333 | ERROR, |
334 | SSCONFLICT, /* A shift/shift conflict */ |
335 | SRCONFLICT, /* Was a reduce, but part of a conflict */ |
336 | RRCONFLICT, /* Was a reduce, but part of a conflict */ |
337 | SH_RESOLVED, /* Was a shift. Precedence resolved conflict */ |
338 | RD_RESOLVED, /* Was reduce. Precedence resolved conflict */ |
339 | NOT_USED, /* Deleted by compression */ |
340 | SHIFTREDUCE /* Shift first, then reduce */ |
341 | }; |
342 | |
343 | /* Every shift or reduce operation is stored as one of the following */ |
344 | struct action { |
345 | struct symbol *sp; /* The look-ahead symbol */ |
346 | enum e_action type; |
347 | union { |
348 | struct state *stp; /* The new state, if a shift */ |
349 | struct rule *rp; /* The rule, if a reduce */ |
350 | } x; |
351 | struct symbol *spOpt; /* SHIFTREDUCE optimization to this symbol */ |
352 | struct action *next; /* Next action for this state */ |
353 | struct action *collide; /* Next action with the same hash */ |
354 | }; |
355 | |
356 | /* Each state of the generated parser's finite state machine |
357 | ** is encoded as an instance of the following structure. */ |
358 | struct state { |
359 | struct config *bp; /* The basis configurations for this state */ |
360 | struct config *cfp; /* All configurations in this set */ |
361 | int statenum; /* Sequential number for this state */ |
362 | struct action *ap; /* List of actions for this state */ |
363 | int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */ |
364 | int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */ |
365 | int iDfltReduce; /* Default action is to REDUCE by this rule */ |
366 | struct rule *pDfltReduce;/* The default REDUCE rule. */ |
367 | int autoReduce; /* True if this is an auto-reduce state */ |
368 | }; |
369 | #define NO_OFFSET(-2147483647) (-2147483647) |
370 | |
371 | /* A followset propagation link indicates that the contents of one |
372 | ** configuration followset should be propagated to another whenever |
373 | ** the first changes. */ |
374 | struct plink { |
375 | struct config *cfp; /* The configuration to which linked */ |
376 | struct plink *next; /* The next propagate link */ |
377 | }; |
378 | |
379 | /* The state vector for the entire parser generator is recorded as |
380 | ** follows. (LEMON uses no global variables and makes little use of |
381 | ** static variables. Fields in the following structure can be thought |
382 | ** of as begin global variables in the program.) */ |
383 | struct lemon { |
384 | struct state **sorted; /* Table of states sorted by state number */ |
385 | struct rule *rule; /* List of all rules */ |
386 | struct rule *startRule; /* First rule */ |
387 | int nstate; /* Number of states */ |
388 | int nxstate; /* nstate with tail degenerate states removed */ |
389 | int nrule; /* Number of rules */ |
390 | int nruleWithAction; /* Number of rules with actions */ |
391 | int nsymbol; /* Number of terminal and nonterminal symbols */ |
392 | int nterminal; /* Number of terminal symbols */ |
393 | int minShiftReduce; /* Minimum shift-reduce action value */ |
394 | int errAction; /* Error action value */ |
395 | int accAction; /* Accept action value */ |
396 | int noAction; /* No-op action value */ |
397 | int minReduce; /* Minimum reduce action */ |
398 | int maxAction; /* Maximum action value of any kind */ |
399 | struct symbol **symbols; /* Sorted array of pointers to symbols */ |
400 | int errorcnt; /* Number of errors */ |
401 | struct symbol *errsym; /* The error symbol */ |
402 | struct symbol *wildcard; /* Token that matches anything */ |
403 | char *name; /* Name of the generated parser */ |
404 | char *arg; /* Declaration of the 3rd argument to parser */ |
405 | char *ctx; /* Declaration of 2nd argument to constructor */ |
406 | char *tokentype; /* Type of terminal symbols in the parser stack */ |
407 | char *vartype; /* The default type of non-terminal symbols */ |
408 | char *start; /* Name of the start symbol for the grammar */ |
409 | char *stacksize; /* Size of the parser stack */ |
410 | char *include; /* Code to put at the start of the C file */ |
411 | char *error; /* Code to execute when an error is seen */ |
412 | char *overflow; /* Code to execute on a stack overflow */ |
413 | char *failure; /* Code to execute on parser failure */ |
414 | char *accept; /* Code to execute when the parser excepts */ |
415 | char *extracode; /* Code appended to the generated file */ |
416 | char *tokendest; /* Code to execute to destroy token data */ |
417 | char *vardest; /* Code for the default non-terminal destructor */ |
418 | char *filename; /* Name of the input file */ |
419 | char *outname; /* Name of the current output file */ |
420 | char *tokenprefix; /* A prefix added to token names in the .h file */ |
421 | int nconflict; /* Number of parsing conflicts */ |
422 | int nactiontab; /* Number of entries in the yy_action[] table */ |
423 | int nlookaheadtab; /* Number of entries in yy_lookahead[] */ |
424 | int tablesize; /* Total table size of all tables in bytes */ |
425 | int basisflag; /* Print only basis configurations */ |
426 | int printPreprocessed; /* Show preprocessor output on stdout */ |
427 | int has_fallback; /* True if any %fallback is seen in the grammar */ |
428 | int nolinenosflag; /* True if #line statements should not be printed */ |
429 | char *argv0; /* Name of the program */ |
430 | }; |
431 | |
432 | #define MemoryCheck(X)if((X)==0){ extern void memory_error(); memory_error(); } if((X)==0){ \ |
433 | extern void memory_error(); \ |
434 | memory_error(); \ |
435 | } |
436 | |
437 | /**************** From the file "table.h" *********************************/ |
438 | /* |
439 | ** All code in this file has been automatically generated |
440 | ** from a specification in the file |
441 | ** "table.q" |
442 | ** by the associative array code building program "aagen". |
443 | ** Do not edit this file! Instead, edit the specification |
444 | ** file, then rerun aagen. |
445 | */ |
446 | /* |
447 | ** Code for processing tables in the LEMON parser generator. |
448 | */ |
449 | /* Routines for handling a strings */ |
450 | |
451 | const char *Strsafe(const char *); |
452 | |
453 | void Strsafe_init(void); |
454 | int Strsafe_insert(const char *); |
455 | const char *Strsafe_find(const char *); |
456 | |
457 | /* Routines for handling symbols of the grammar */ |
458 | |
459 | struct symbol *Symbol_new(const char *); |
460 | int Symbolcmpp(const void *, const void *); |
461 | void Symbol_init(void); |
462 | int Symbol_insert(struct symbol *, const char *); |
463 | struct symbol *Symbol_find(const char *); |
464 | struct symbol *Symbol_Nth(int); |
465 | int Symbol_count(void); |
466 | struct symbol **Symbol_arrayof(void); |
467 | |
468 | /* Routines to manage the state table */ |
469 | |
470 | int Configcmp(const char *, const char *); |
471 | struct state *State_new(void); |
472 | void State_init(void); |
473 | int State_insert(struct state *, struct config *); |
474 | struct state *State_find(struct config *); |
475 | struct state **State_arrayof(void); |
476 | |
477 | /* Routines used for efficiency in Configlist_add */ |
478 | |
479 | void Configtable_init(void); |
480 | int Configtable_insert(struct config *); |
481 | struct config *Configtable_find(struct config *); |
482 | void Configtable_clear(int(*)(struct config *)); |
483 | |
484 | /****************** From the file "action.c" *******************************/ |
485 | /* |
486 | ** Routines processing parser actions in the LEMON parser generator. |
487 | */ |
488 | |
489 | /* Allocate a new parser action */ |
490 | static struct action *Action_new(void){ |
491 | static struct action *actionfreelist = 0; |
492 | struct action *newaction; |
493 | |
494 | if( actionfreelist==0 ){ |
495 | int i; |
496 | int amt = 100; |
497 | actionfreelist = (struct action *)calloc(amt, sizeof(struct action)); |
498 | if( actionfreelist==0 ){ |
499 | fprintf(stderrstderr,"Unable to allocate memory for a new parser action."); |
500 | exit(1); |
501 | } |
502 | for(i=0; i<amt-1; i++) actionfreelist[i].next = &actionfreelist[i+1]; |
503 | actionfreelist[amt-1].next = 0; |
504 | } |
505 | newaction = actionfreelist; |
506 | actionfreelist = actionfreelist->next; |
507 | return newaction; |
508 | } |
509 | |
510 | /* Compare two actions for sorting purposes. Return negative, zero, or |
511 | ** positive if the first action is less than, equal to, or greater than |
512 | ** the first |
513 | */ |
514 | static int actioncmp( |
515 | struct action *ap1, |
516 | struct action *ap2 |
517 | ){ |
518 | int rc; |
519 | rc = ap1->sp->index - ap2->sp->index; |
520 | if( rc==0 ){ |
521 | rc = (int)ap1->type - (int)ap2->type; |
522 | } |
523 | if( rc==0 && (ap1->type==REDUCE || ap1->type==SHIFTREDUCE) ){ |
524 | rc = ap1->x.rp->index - ap2->x.rp->index; |
525 | } |
526 | if( rc==0 ){ |
527 | rc = (int) (ap2 - ap1); |
528 | } |
529 | return rc; |
530 | } |
531 | |
532 | /* Sort parser actions */ |
533 | static struct action *Action_sort( |
534 | struct action *ap |
535 | ){ |
536 | ap = (struct action *)msort((char *)ap,(char **)&ap->next, |
537 | (int(*)(const char*,const char*))actioncmp); |
538 | return ap; |
539 | } |
540 | |
541 | void Action_add( |
542 | struct action **app, |
543 | enum e_action type, |
544 | struct symbol *sp, |
545 | char *arg |
546 | ){ |
547 | struct action *newaction; |
548 | newaction = Action_new(); |
549 | newaction->next = *app; |
550 | *app = newaction; |
551 | newaction->type = type; |
552 | newaction->sp = sp; |
553 | newaction->spOpt = 0; |
554 | if( type==SHIFT ){ |
555 | newaction->x.stp = (struct state *)arg; |
556 | }else{ |
557 | newaction->x.rp = (struct rule *)arg; |
558 | } |
559 | } |
560 | /********************** New code to implement the "acttab" module ***********/ |
561 | /* |
562 | ** This module implements routines use to construct the yy_action[] table. |
563 | */ |
564 | |
565 | /* |
566 | ** The state of the yy_action table under construction is an instance of |
567 | ** the following structure. |
568 | ** |
569 | ** The yy_action table maps the pair (state_number, lookahead) into an |
570 | ** action_number. The table is an array of integers pairs. The state_number |
571 | ** determines an initial offset into the yy_action array. The lookahead |
572 | ** value is then added to this initial offset to get an index X into the |
573 | ** yy_action array. If the aAction[X].lookahead equals the value of the |
574 | ** of the lookahead input, then the value of the action_number output is |
575 | ** aAction[X].action. If the lookaheads do not match then the |
576 | ** default action for the state_number is returned. |
577 | ** |
578 | ** All actions associated with a single state_number are first entered |
579 | ** into aLookahead[] using multiple calls to acttab_action(). Then the |
580 | ** actions for that single state_number are placed into the aAction[] |
581 | ** array with a single call to acttab_insert(). The acttab_insert() call |
582 | ** also resets the aLookahead[] array in preparation for the next |
583 | ** state number. |
584 | */ |
585 | struct lookahead_action { |
586 | int lookahead; /* Value of the lookahead token */ |
587 | int action; /* Action to take on the given lookahead */ |
588 | }; |
589 | typedef struct acttab acttab; |
590 | struct acttab { |
591 | int nAction; /* Number of used slots in aAction[] */ |
592 | int nActionAlloc; /* Slots allocated for aAction[] */ |
593 | struct lookahead_action |
594 | *aAction, /* The yy_action[] table under construction */ |
595 | *aLookahead; /* A single new transaction set */ |
596 | int mnLookahead; /* Minimum aLookahead[].lookahead */ |
597 | int mnAction; /* Action associated with mnLookahead */ |
598 | int mxLookahead; /* Maximum aLookahead[].lookahead */ |
599 | int nLookahead; /* Used slots in aLookahead[] */ |
600 | int nLookaheadAlloc; /* Slots allocated in aLookahead[] */ |
601 | int nterminal; /* Number of terminal symbols */ |
602 | int nsymbol; /* total number of symbols */ |
603 | }; |
604 | |
605 | /* Return the number of entries in the yy_action table */ |
606 | #define acttab_lookahead_size(X)((X)->nAction) ((X)->nAction) |
607 | |
608 | /* The value for the N-th entry in yy_action */ |
609 | #define acttab_yyaction(X,N)((X)->aAction[N].action) ((X)->aAction[N].action) |
610 | |
611 | /* The value for the N-th entry in yy_lookahead */ |
612 | #define acttab_yylookahead(X,N)((X)->aAction[N].lookahead) ((X)->aAction[N].lookahead) |
613 | |
614 | /* Free all memory associated with the given acttab */ |
615 | void acttab_free(acttab *p){ |
616 | free( p->aAction ); |
617 | free( p->aLookahead ); |
618 | free( p ); |
619 | } |
620 | |
621 | /* Allocate a new acttab structure */ |
622 | acttab *acttab_alloc(int nsymbol, int nterminal){ |
623 | acttab *p = (acttab *) calloc( 1, sizeof(*p) ); |
624 | if( p==0 ){ |
625 | fprintf(stderrstderr,"Unable to allocate memory for a new acttab."); |
626 | exit(1); |
627 | } |
628 | memset(p, 0, sizeof(*p)); |
629 | p->nsymbol = nsymbol; |
630 | p->nterminal = nterminal; |
631 | return p; |
632 | } |
633 | |
634 | /* Add a new action to the current transaction set. |
635 | ** |
636 | ** This routine is called once for each lookahead for a particular |
637 | ** state. |
638 | */ |
639 | void acttab_action(acttab *p, int lookahead, int action){ |
640 | if( p->nLookahead>=p->nLookaheadAlloc ){ |
641 | p->nLookaheadAlloc += 25; |
642 | p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead, |
643 | sizeof(p->aLookahead[0])*p->nLookaheadAlloc ); |
644 | if( p->aLookahead==0 ){ |
645 | fprintf(stderrstderr,"malloc failed\n"); |
646 | exit(1); |
647 | } |
648 | } |
649 | if( p->nLookahead==0 ){ |
650 | p->mxLookahead = lookahead; |
651 | p->mnLookahead = lookahead; |
652 | p->mnAction = action; |
653 | }else{ |
654 | if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead; |
655 | if( p->mnLookahead>lookahead ){ |
656 | p->mnLookahead = lookahead; |
657 | p->mnAction = action; |
658 | } |
659 | } |
660 | p->aLookahead[p->nLookahead].lookahead = lookahead; |
661 | p->aLookahead[p->nLookahead].action = action; |
662 | p->nLookahead++; |
663 | } |
664 | |
665 | /* |
666 | ** Add the transaction set built up with prior calls to acttab_action() |
667 | ** into the current action table. Then reset the transaction set back |
668 | ** to an empty set in preparation for a new round of acttab_action() calls. |
669 | ** |
670 | ** Return the offset into the action table of the new transaction. |
671 | ** |
672 | ** If the makeItSafe parameter is true, then the offset is chosen so that |
673 | ** it is impossible to overread the yy_lookaside[] table regardless of |
674 | ** the lookaside token. This is done for the terminal symbols, as they |
675 | ** come from external inputs and can contain syntax errors. When makeItSafe |
676 | ** is false, there is more flexibility in selecting offsets, resulting in |
677 | ** a smaller table. For non-terminal symbols, which are never syntax errors, |
678 | ** makeItSafe can be false. |
679 | */ |
680 | int acttab_insert(acttab *p, int makeItSafe){ |
681 | int i, j, k, n, end; |
682 | assert( p->nLookahead>0 )((void) sizeof ((p->nLookahead>0) ? 1 : 0), __extension__ ({ if (p->nLookahead>0) ; else __assert_fail ("p->nLookahead>0" , "tools/lemon/lemon.c", 682, __extension__ __PRETTY_FUNCTION__ ); })); |
683 | |
684 | /* Make sure we have enough space to hold the expanded action table |
685 | ** in the worst case. The worst case occurs if the transaction set |
686 | ** must be appended to the current action table |
687 | */ |
688 | n = p->nsymbol + 1; |
689 | if( p->nAction + n >= p->nActionAlloc ){ |
690 | int oldAlloc = p->nActionAlloc; |
691 | p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20; |
692 | p->aAction = (struct lookahead_action *) realloc( p->aAction, |
693 | sizeof(p->aAction[0])*p->nActionAlloc); |
694 | if( p->aAction==0 ){ |
695 | fprintf(stderrstderr,"malloc failed\n"); |
696 | exit(1); |
697 | } |
698 | for(i=oldAlloc; i<p->nActionAlloc; i++){ |
699 | p->aAction[i].lookahead = -1; |
700 | p->aAction[i].action = -1; |
701 | } |
702 | } |
703 | |
704 | /* Scan the existing action table looking for an offset that is a |
705 | ** duplicate of the current transaction set. Fall out of the loop |
706 | ** if and when the duplicate is found. |
707 | ** |
708 | ** i is the index in p->aAction[] where p->mnLookahead is inserted. |
709 | */ |
710 | end = makeItSafe ? p->mnLookahead : 0; |
711 | for(i=p->nAction-1; i>=end; i--){ |
712 | if( p->aAction[i].lookahead==p->mnLookahead ){ |
713 | /* All lookaheads and actions in the aLookahead[] transaction |
714 | ** must match against the candidate aAction[i] entry. */ |
715 | if( p->aAction[i].action!=p->mnAction ) continue; |
716 | for(j=0; j<p->nLookahead; j++){ |
717 | k = p->aLookahead[j].lookahead - p->mnLookahead + i; |
718 | if( k<0 || k>=p->nAction ) break; |
719 | if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break; |
720 | if( p->aLookahead[j].action!=p->aAction[k].action ) break; |
721 | } |
722 | if( j<p->nLookahead ) continue; |
723 | |
724 | /* No possible lookahead value that is not in the aLookahead[] |
725 | ** transaction is allowed to match aAction[i] */ |
726 | n = 0; |
727 | for(j=0; j<p->nAction; j++){ |
728 | if( p->aAction[j].lookahead<0 ) continue; |
729 | if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++; |
730 | } |
731 | if( n==p->nLookahead ){ |
732 | break; /* An exact match is found at offset i */ |
733 | } |
734 | } |
735 | } |
736 | |
737 | /* If no existing offsets exactly match the current transaction, find an |
738 | ** an empty offset in the aAction[] table in which we can add the |
739 | ** aLookahead[] transaction. |
740 | */ |
741 | if( i<end ){ |
742 | /* Look for holes in the aAction[] table that fit the current |
743 | ** aLookahead[] transaction. Leave i set to the offset of the hole. |
744 | ** If no holes are found, i is left at p->nAction, which means the |
745 | ** transaction will be appended. */ |
746 | i = makeItSafe ? p->mnLookahead : 0; |
747 | for(; i<p->nActionAlloc - p->mxLookahead; i++){ |
748 | if( p->aAction[i].lookahead<0 ){ |
749 | for(j=0; j<p->nLookahead; j++){ |
750 | k = p->aLookahead[j].lookahead - p->mnLookahead + i; |
751 | if( k<0 ) break; |
752 | if( p->aAction[k].lookahead>=0 ) break; |
753 | } |
754 | if( j<p->nLookahead ) continue; |
755 | for(j=0; j<p->nAction; j++){ |
756 | if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break; |
757 | } |
758 | if( j==p->nAction ){ |
759 | break; /* Fits in empty slots */ |
760 | } |
761 | } |
762 | } |
763 | } |
764 | /* Insert transaction set at index i. */ |
765 | #if 0 |
766 | printf("Acttab:"); |
767 | for(j=0; j<p->nLookahead; j++){ |
768 | printf(" %d", p->aLookahead[j].lookahead); |
769 | } |
770 | printf(" inserted at %d\n", i); |
771 | #endif |
772 | for(j=0; j<p->nLookahead; j++){ |
773 | k = p->aLookahead[j].lookahead - p->mnLookahead + i; |
774 | p->aAction[k] = p->aLookahead[j]; |
775 | if( k>=p->nAction ) p->nAction = k+1; |
776 | } |
777 | if( makeItSafe && i+p->nterminal>=p->nAction ) p->nAction = i+p->nterminal+1; |
778 | p->nLookahead = 0; |
779 | |
780 | /* Return the offset that is added to the lookahead in order to get the |
781 | ** index into yy_action of the action */ |
782 | return i - p->mnLookahead; |
783 | } |
784 | |
785 | /* |
786 | ** Return the size of the action table without the trailing syntax error |
787 | ** entries. |
788 | */ |
789 | int acttab_action_size(acttab *p){ |
790 | int n = p->nAction; |
791 | while( n>0 && p->aAction[n-1].lookahead<0 ){ n--; } |
792 | return n; |
793 | } |
794 | |
795 | /********************** From the file "build.c" *****************************/ |
796 | /* |
797 | ** Routines to construction the finite state machine for the LEMON |
798 | ** parser generator. |
799 | */ |
800 | |
801 | /* Find a precedence symbol of every rule in the grammar. |
802 | ** |
803 | ** Those rules which have a precedence symbol coded in the input |
804 | ** grammar using the "[symbol]" construct will already have the |
805 | ** rp->precsym field filled. Other rules take as their precedence |
806 | ** symbol the first RHS symbol with a defined precedence. If there |
807 | ** are not RHS symbols with a defined precedence, the precedence |
808 | ** symbol field is left blank. |
809 | */ |
810 | void FindRulePrecedences(struct lemon *xp) |
811 | { |
812 | struct rule *rp; |
813 | for(rp=xp->rule; rp; rp=rp->next){ |
| 22 | | Loop condition is false. Execution continues on line 831 | |
|
814 | if( rp->precsym==0 ){ |
815 | int i, j; |
816 | for(i=0; i<rp->nrhs && rp->precsym==0; i++){ |
817 | struct symbol *sp = rp->rhs[i]; |
818 | if( sp->type==MULTITERMINAL ){ |
819 | for(j=0; j<sp->nsubsym; j++){ |
820 | if( sp->subsym[j]->prec>=0 ){ |
821 | rp->precsym = sp->subsym[j]; |
822 | break; |
823 | } |
824 | } |
825 | }else if( sp->prec>=0 ){ |
826 | rp->precsym = rp->rhs[i]; |
827 | } |
828 | } |
829 | } |
830 | } |
831 | return; |
| 23 | | Returning without writing to 'xp->start', which participates in a condition later | |
|
| 24 | | Returning without writing to 'xp->startRule' | |
|
832 | } |
833 | |
834 | /* Find all nonterminals which will generate the empty string. |
835 | ** Then go back and compute the first sets of every nonterminal. |
836 | ** The first set is the set of all terminal symbols which can begin |
837 | ** a string generated by that nonterminal. |
838 | */ |
839 | void FindFirstSets(struct lemon *lemp) |
840 | { |
841 | int i, j; |
842 | struct rule *rp; |
843 | int progress; |
844 | |
845 | for(i=0; i<lemp->nsymbol; i++){ |
| 27 | | Loop condition is false. Execution continues on line 848 | |
|
846 | lemp->symbols[i]->lambda = LEMON_FALSE; |
847 | } |
848 | for(i=lemp->nterminal; i<lemp->nsymbol; i++){ |
| 28 | | Loop condition is false. Execution continues on line 854 | |
|
849 | lemp->symbols[i]->firstset = SetNew(); |
850 | } |
851 | |
852 | /* First compute all lambdas */ |
853 | do{ |
| 30 | | Loop condition is false. Exiting loop | |
|
854 | progress = 0; |
855 | for(rp=lemp->rule; rp; rp=rp->next){ |
| 29 | | Loop condition is false. Execution continues on line 867 | |
|
856 | if( rp->lhs->lambda ) continue; |
857 | for(i=0; i<rp->nrhs; i++){ |
858 | struct symbol *sp = rp->rhs[i]; |
859 | assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE )((void) sizeof ((sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE ) ? 1 : 0), __extension__ ({ if (sp->type==NONTERMINAL || sp ->lambda==LEMON_FALSE) ; else __assert_fail ("sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE" , "tools/lemon/lemon.c", 859, __extension__ __PRETTY_FUNCTION__ ); })); |
860 | if( sp->lambda==LEMON_FALSE ) break; |
861 | } |
862 | if( i==rp->nrhs ){ |
863 | rp->lhs->lambda = LEMON_TRUE; |
864 | progress = 1; |
865 | } |
866 | } |
867 | }while( progress ); |
868 | |
869 | /* Now compute all first sets */ |
870 | do{ |
| 32 | | Loop condition is false. Exiting loop | |
|
871 | struct symbol *s1, *s2; |
872 | progress = 0; |
873 | for(rp=lemp->rule; rp; rp=rp->next){ |
| 31 | | Loop condition is false. Execution continues on line 893 | |
|
874 | s1 = rp->lhs; |
875 | for(i=0; i<rp->nrhs; i++){ |
876 | s2 = rp->rhs[i]; |
877 | if( s2->type==TERMINAL ){ |
878 | progress += SetAdd(s1->firstset,s2->index); |
879 | break; |
880 | }else if( s2->type==MULTITERMINAL ){ |
881 | for(j=0; j<s2->nsubsym; j++){ |
882 | progress += SetAdd(s1->firstset,s2->subsym[j]->index); |
883 | } |
884 | break; |
885 | }else if( s1==s2 ){ |
886 | if( s1->lambda==LEMON_FALSE ) break; |
887 | }else{ |
888 | progress += SetUnion(s1->firstset,s2->firstset); |
889 | if( s2->lambda==LEMON_FALSE ) break; |
890 | } |
891 | } |
892 | } |
893 | }while( progress ); |
894 | return; |
| 33 | | Returning without writing to 'lemp->start', which participates in a condition later | |
|
| 34 | | Returning without writing to 'lemp->startRule' | |
|
895 | } |
896 | |
897 | /* Compute all LR(0) states for the grammar. Links |
898 | ** are added to between some states so that the LR(1) follow sets |
899 | ** can be computed later. |
900 | */ |
901 | PRIVATE struct state *getstate(struct lemon *); /* forward reference */ |
902 | void FindStates(struct lemon *lemp) |
903 | { |
904 | struct symbol *sp; |
905 | struct rule *rp; |
906 | |
907 | Configlist_init(); |
908 | |
909 | /* Find the start symbol */ |
910 | if( lemp->start ){ |
| 37 | | Assuming field 'start' is non-null | |
|
| |
911 | sp = Symbol_find(lemp->start); |
912 | if( sp==0 ){ |
| 39 | | Assuming 'sp' is equal to null | |
|
| |
913 | ErrorMsg(lemp->filename,0, |
914 | "The specified start symbol \"%s\" is not " |
915 | "in a nonterminal of the grammar. \"%s\" will be used as the start " |
916 | "symbol instead.",lemp->start,lemp->startRule->lhs->name); |
| 41 | | Access to field 'lhs' results in a dereference of a null pointer (loaded from field 'startRule') |
|
917 | lemp->errorcnt++; |
918 | sp = lemp->startRule->lhs; |
919 | } |
920 | }else if( lemp->startRule ){ |
921 | sp = lemp->startRule->lhs; |
922 | }else{ |
923 | ErrorMsg(lemp->filename,0,"Internal error - no start rule\n"); |
924 | exit(1); |
925 | } |
926 | |
927 | /* Make sure the start symbol doesn't occur on the right-hand side of |
928 | ** any rule. Report an error if it does. (YACC would generate a new |
929 | ** start symbol in this case.) */ |
930 | for(rp=lemp->rule; rp; rp=rp->next){ |
931 | int i; |
932 | for(i=0; i<rp->nrhs; i++){ |
933 | if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */ |
934 | ErrorMsg(lemp->filename,0, |
935 | "The start symbol \"%s\" occurs on the " |
936 | "right-hand side of a rule. This will result in a parser which " |
937 | "does not work properly.",sp->name); |
938 | lemp->errorcnt++; |
939 | } |
940 | } |
941 | } |
942 | |
943 | /* The basis configuration set for the first state |
944 | ** is all rules which have the start symbol as their |
945 | ** left-hand side */ |
946 | for(rp=sp->rule; rp; rp=rp->nextlhs){ |
947 | struct config *newcfp; |
948 | rp->lhsStart = 1; |
949 | newcfp = Configlist_addbasis(rp,0); |
950 | SetAdd(newcfp->fws,0); |
951 | } |
952 | |
953 | /* Compute the first state. All other states will be |
954 | ** computed automatically during the computation of the first one. |
955 | ** The returned pointer to the first state is not used. */ |
956 | (void)getstate(lemp); |
957 | return; |
958 | } |
959 | |
960 | /* Return a pointer to a state which is described by the configuration |
961 | ** list which has been built from calls to Configlist_add. |
962 | */ |
963 | PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */ |
964 | PRIVATE struct state *getstate(struct lemon *lemp) |
965 | { |
966 | struct config *cfp, *bp; |
967 | struct state *stp; |
968 | |
969 | /* Extract the sorted basis of the new state. The basis was constructed |
970 | ** by prior calls to "Configlist_addbasis()". */ |
971 | Configlist_sortbasis(); |
972 | bp = Configlist_basis(); |
973 | |
974 | /* Get a state with the same basis */ |
975 | stp = State_find(bp); |
976 | if( stp ){ |
977 | /* A state with the same basis already exists! Copy all the follow-set |
978 | ** propagation links from the state under construction into the |
979 | ** preexisting state, then return a pointer to the preexisting state */ |
980 | struct config *x, *y; |
981 | for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){ |
982 | Plink_copy(&y->bplp,x->bplp); |
983 | Plink_delete(x->fplp); |
984 | x->fplp = x->bplp = 0; |
985 | } |
986 | cfp = Configlist_return(); |
987 | Configlist_eat(cfp); |
988 | }else{ |
989 | /* This really is a new state. Construct all the details */ |
990 | Configlist_closure(lemp); /* Compute the configuration closure */ |
991 | Configlist_sort(); /* Sort the configuration closure */ |
992 | cfp = Configlist_return(); /* Get a pointer to the config list */ |
993 | stp = State_new(); /* A new state structure */ |
994 | MemoryCheck(stp)if((stp)==0){ extern void memory_error(); memory_error(); }; |
995 | stp->bp = bp; /* Remember the configuration basis */ |
996 | stp->cfp = cfp; /* Remember the configuration closure */ |
997 | stp->statenum = lemp->nstate++; /* Every state gets a sequence number */ |
998 | stp->ap = 0; /* No actions, yet. */ |
999 | State_insert(stp,stp->bp); /* Add to the state table */ |
1000 | buildshifts(lemp,stp); /* Recursively compute successor states */ |
1001 | } |
1002 | return stp; |
1003 | } |
1004 | |
1005 | /* |
1006 | ** Return true if two symbols are the same. |
1007 | */ |
1008 | int same_symbol(struct symbol *a, struct symbol *b) |
1009 | { |
1010 | int i; |
1011 | if( a==b ) return 1; |
1012 | if( a->type!=MULTITERMINAL ) return 0; |
1013 | if( b->type!=MULTITERMINAL ) return 0; |
1014 | if( a->nsubsym!=b->nsubsym ) return 0; |
1015 | for(i=0; i<a->nsubsym; i++){ |
1016 | if( a->subsym[i]!=b->subsym[i] ) return 0; |
1017 | } |
1018 | return 1; |
1019 | } |
1020 | |
1021 | /* Construct all successor states to the given state. A "successor" |
1022 | ** state is any state which can be reached by a shift action. |
1023 | */ |
1024 | PRIVATE void buildshifts(struct lemon *lemp, struct state *stp) |
1025 | { |
1026 | struct config *cfp; /* For looping thru the config closure of "stp" */ |
1027 | struct config *bcfp; /* For the inner loop on config closure of "stp" */ |
1028 | struct config *newcfg; /* */ |
1029 | struct symbol *sp; /* Symbol following the dot in configuration "cfp" */ |
1030 | struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */ |
1031 | struct state *newstp; /* A pointer to a successor state */ |
1032 | |
1033 | /* Each configuration becomes complete after it contributes to a successor |
1034 | ** state. Initially, all configurations are incomplete */ |
1035 | for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE; |
1036 | |
1037 | /* Loop through all configurations of the state "stp" */ |
1038 | for(cfp=stp->cfp; cfp; cfp=cfp->next){ |
1039 | if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */ |
1040 | if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */ |
1041 | Configlist_reset(); /* Reset the new config set */ |
1042 | sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */ |
1043 | |
1044 | /* For every configuration in the state "stp" which has the symbol "sp" |
1045 | ** following its dot, add the same configuration to the basis set under |
1046 | ** construction but with the dot shifted one symbol to the right. */ |
1047 | for(bcfp=cfp; bcfp; bcfp=bcfp->next){ |
1048 | if( bcfp->status==COMPLETE ) continue; /* Already used */ |
1049 | if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */ |
1050 | bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */ |
1051 | if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */ |
1052 | bcfp->status = COMPLETE; /* Mark this config as used */ |
1053 | newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1); |
1054 | Plink_add(&newcfg->bplp,bcfp); |
1055 | } |
1056 | |
1057 | /* Get a pointer to the state described by the basis configuration set |
1058 | ** constructed in the preceding loop */ |
1059 | newstp = getstate(lemp); |
1060 | |
1061 | /* The state "newstp" is reached from the state "stp" by a shift action |
1062 | ** on the symbol "sp" */ |
1063 | if( sp->type==MULTITERMINAL ){ |
1064 | int i; |
1065 | for(i=0; i<sp->nsubsym; i++){ |
1066 | Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp); |
1067 | } |
1068 | }else{ |
1069 | Action_add(&stp->ap,SHIFT,sp,(char *)newstp); |
1070 | } |
1071 | } |
1072 | } |
1073 | |
1074 | /* |
1075 | ** Construct the propagation links |
1076 | */ |
1077 | void FindLinks(struct lemon *lemp) |
1078 | { |
1079 | int i; |
1080 | struct config *cfp, *other; |
1081 | struct state *stp; |
1082 | struct plink *plp; |
1083 | |
1084 | /* Housekeeping detail: |
1085 | ** Add to every propagate link a pointer back to the state to |
1086 | ** which the link is attached. */ |
1087 | for(i=0; i<lemp->nstate; i++){ |
1088 | stp = lemp->sorted[i]; |
1089 | for(cfp=stp?stp->cfp:0; cfp; cfp=cfp->next){ |
1090 | cfp->stp = stp; |
1091 | } |
1092 | } |
1093 | |
1094 | /* Convert all backlinks into forward links. Only the forward |
1095 | ** links are used in the follow-set computation. */ |
1096 | for(i=0; i<lemp->nstate; i++){ |
1097 | stp = lemp->sorted[i]; |
1098 | for(cfp=stp?stp->cfp:0; cfp; cfp=cfp->next){ |
1099 | for(plp=cfp->bplp; plp; plp=plp->next){ |
1100 | other = plp->cfp; |
1101 | Plink_add(&other->fplp,cfp); |
1102 | } |
1103 | } |
1104 | } |
1105 | } |
1106 | |
1107 | /* Compute all followsets. |
1108 | ** |
1109 | ** A followset is the set of all symbols which can come immediately |
1110 | ** after a configuration. |
1111 | */ |
1112 | void FindFollowSets(struct lemon *lemp) |
1113 | { |
1114 | int i; |
1115 | struct config *cfp; |
1116 | struct plink *plp; |
1117 | int progress; |
1118 | int change; |
1119 | |
1120 | for(i=0; i<lemp->nstate; i++){ |
1121 | assert( lemp->sorted[i]!=0 )((void) sizeof ((lemp->sorted[i]!=0) ? 1 : 0), __extension__ ({ if (lemp->sorted[i]!=0) ; else __assert_fail ("lemp->sorted[i]!=0" , "tools/lemon/lemon.c", 1121, __extension__ __PRETTY_FUNCTION__ ); })); |
1122 | for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ |
1123 | cfp->status = INCOMPLETE; |
1124 | } |
1125 | } |
1126 | |
1127 | do{ |
1128 | progress = 0; |
1129 | for(i=0; i<lemp->nstate; i++){ |
1130 | assert( lemp->sorted[i]!=0 )((void) sizeof ((lemp->sorted[i]!=0) ? 1 : 0), __extension__ ({ if (lemp->sorted[i]!=0) ; else __assert_fail ("lemp->sorted[i]!=0" , "tools/lemon/lemon.c", 1130, __extension__ __PRETTY_FUNCTION__ ); })); |
1131 | for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ |
1132 | if( cfp->status==COMPLETE ) continue; |
1133 | for(plp=cfp->fplp; plp; plp=plp->next){ |
1134 | change = SetUnion(plp->cfp->fws,cfp->fws); |
1135 | if( change ){ |
1136 | plp->cfp->status = INCOMPLETE; |
1137 | progress = 1; |
1138 | } |
1139 | } |
1140 | cfp->status = COMPLETE; |
1141 | } |
1142 | } |
1143 | }while( progress ); |
1144 | } |
1145 | |
1146 | static int resolve_conflict(struct action *,struct action *); |
1147 | |
1148 | /* Compute the reduce actions, and resolve conflicts. |
1149 | */ |
1150 | void FindActions(struct lemon *lemp) |
1151 | { |
1152 | int i,j; |
1153 | struct config *cfp; |
1154 | struct state *stp; |
1155 | struct symbol *sp; |
1156 | struct rule *rp; |
1157 | |
1158 | /* Add all of the reduce actions |
1159 | ** A reduce action is added for each element of the followset of |
1160 | ** a configuration which has its dot at the extreme right. |
1161 | */ |
1162 | for(i=0; i<lemp->nstate; i++){ /* Loop over all states */ |
1163 | stp = lemp->sorted[i]; |
1164 | for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */ |
1165 | if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */ |
1166 | for(j=0; j<lemp->nterminal; j++){ |
1167 | if( SetFind(cfp->fws,j)(cfp->fws[j]) ){ |
1168 | /* Add a reduce action to the state "stp" which will reduce by the |
1169 | ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */ |
1170 | Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp); |
1171 | } |
1172 | } |
1173 | } |
1174 | } |
1175 | } |
1176 | |
1177 | /* Add the accepting token */ |
1178 | if( lemp->start ){ |
1179 | sp = Symbol_find(lemp->start); |
1180 | if( sp==0 ){ |
1181 | if( lemp->startRule==0 ){ |
1182 | fprintf(stderrstderr, "internal error on source line %d: no start rule\n", |
1183 | __LINE__1183); |
1184 | exit(1); |
1185 | } |
1186 | sp = lemp->startRule->lhs; |
1187 | } |
1188 | }else{ |
1189 | sp = lemp->startRule->lhs; |
1190 | } |
1191 | /* Add to the first state (which is always the starting state of the |
1192 | ** finite state machine) an action to ACCEPT if the lookahead is the |
1193 | ** start nonterminal. */ |
1194 | Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0); |
1195 | |
1196 | /* Resolve conflicts */ |
1197 | for(i=0; i<lemp->nstate; i++){ |
1198 | struct action *ap, *nap; |
1199 | stp = lemp->sorted[i]; |
1200 | /* assert( stp->ap ); */ |
1201 | stp->ap = Action_sort(stp->ap); |
1202 | for(ap=stp->ap; ap && ap->next; ap=ap->next){ |
1203 | for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){ |
1204 | /* The two actions "ap" and "nap" have the same lookahead. |
1205 | ** Figure out which one should be used */ |
1206 | lemp->nconflict += resolve_conflict(ap,nap); |
1207 | } |
1208 | } |
1209 | } |
1210 | |
1211 | /* Report an error for each rule that can never be reduced. */ |
1212 | for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE; |
1213 | for(i=0; i<lemp->nstate; i++){ |
1214 | struct action *ap; |
1215 | for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ |
1216 | if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE; |
1217 | } |
1218 | } |
1219 | for(rp=lemp->rule; rp; rp=rp->next){ |
1220 | if( rp->canReduce ) continue; |
1221 | ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n"); |
1222 | lemp->errorcnt++; |
1223 | } |
1224 | } |
1225 | |
1226 | /* Resolve a conflict between the two given actions. If the |
1227 | ** conflict can't be resolved, return non-zero. |
1228 | ** |
1229 | ** NO LONGER TRUE: |
1230 | ** To resolve a conflict, first look to see if either action |
1231 | ** is on an error rule. In that case, take the action which |
1232 | ** is not associated with the error rule. If neither or both |
1233 | ** actions are associated with an error rule, then try to |
1234 | ** use precedence to resolve the conflict. |
1235 | ** |
1236 | ** If either action is a SHIFT, then it must be apx. This |
1237 | ** function won't work if apx->type==REDUCE and apy->type==SHIFT. |
1238 | */ |
1239 | static int resolve_conflict( |
1240 | struct action *apx, |
1241 | struct action *apy |
1242 | ){ |
1243 | struct symbol *spx, *spy; |
1244 | int errcnt = 0; |
1245 | assert( apx->sp==apy->sp )((void) sizeof ((apx->sp==apy->sp) ? 1 : 0), __extension__ ({ if (apx->sp==apy->sp) ; else __assert_fail ("apx->sp==apy->sp" , "tools/lemon/lemon.c", 1245, __extension__ __PRETTY_FUNCTION__ ); })); /* Otherwise there would be no conflict */ |
1246 | if( apx->type==SHIFT && apy->type==SHIFT ){ |
1247 | apy->type = SSCONFLICT; |
1248 | errcnt++; |
1249 | } |
1250 | if( apx->type==SHIFT && apy->type==REDUCE ){ |
1251 | spx = apx->sp; |
1252 | spy = apy->x.rp->precsym; |
1253 | if( spy==0 || spx->prec<0 || spy->prec<0 ){ |
1254 | /* Not enough precedence information. */ |
1255 | apy->type = SRCONFLICT; |
1256 | errcnt++; |
1257 | }else if( spx->prec>spy->prec ){ /* higher precedence wins */ |
1258 | apy->type = RD_RESOLVED; |
1259 | }else if( spx->prec<spy->prec ){ |
1260 | apx->type = SH_RESOLVED; |
1261 | }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */ |
1262 | apy->type = RD_RESOLVED; /* associativity */ |
1263 | }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */ |
1264 | apx->type = SH_RESOLVED; |
1265 | }else{ |
1266 | assert( spx->prec==spy->prec && spx->assoc==NONE )((void) sizeof ((spx->prec==spy->prec && spx-> assoc==NONE) ? 1 : 0), __extension__ ({ if (spx->prec==spy ->prec && spx->assoc==NONE) ; else __assert_fail ("spx->prec==spy->prec && spx->assoc==NONE" , "tools/lemon/lemon.c", 1266, __extension__ __PRETTY_FUNCTION__ ); })); |
1267 | apx->type = ERROR; |
1268 | } |
1269 | }else if( apx->type==REDUCE && apy->type==REDUCE ){ |
1270 | spx = apx->x.rp->precsym; |
1271 | spy = apy->x.rp->precsym; |
1272 | if( spx==0 || spy==0 || spx->prec<0 || |
1273 | spy->prec<0 || spx->prec==spy->prec ){ |
1274 | apy->type = RRCONFLICT; |
1275 | errcnt++; |
1276 | }else if( spx->prec>spy->prec ){ |
1277 | apy->type = RD_RESOLVED; |
1278 | }else if( spx->prec<spy->prec ){ |
1279 | apx->type = RD_RESOLVED; |
1280 | } |
1281 | }else{ |
1282 | assert(((void) sizeof ((apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ? 1 : 0), __extension__ ({ if (apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ; else __assert_fail ("apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx->type==RRCONFLICT || apy->type==SH_RESOLVED || apy->type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type==SRCONFLICT || apy->type==RRCONFLICT" , "tools/lemon/lemon.c", 1293, __extension__ __PRETTY_FUNCTION__ ); })) |
1283 | apx->type==SH_RESOLVED ||((void) sizeof ((apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ? 1 : 0), __extension__ ({ if (apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ; else __assert_fail ("apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx->type==RRCONFLICT || apy->type==SH_RESOLVED || apy->type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type==SRCONFLICT || apy->type==RRCONFLICT" , "tools/lemon/lemon.c", 1293, __extension__ __PRETTY_FUNCTION__ ); })) |
1284 | apx->type==RD_RESOLVED ||((void) sizeof ((apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ? 1 : 0), __extension__ ({ if (apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ; else __assert_fail ("apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx->type==RRCONFLICT || apy->type==SH_RESOLVED || apy->type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type==SRCONFLICT || apy->type==RRCONFLICT" , "tools/lemon/lemon.c", 1293, __extension__ __PRETTY_FUNCTION__ ); })) |
1285 | apx->type==SSCONFLICT ||((void) sizeof ((apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ? 1 : 0), __extension__ ({ if (apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ; else __assert_fail ("apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx->type==RRCONFLICT || apy->type==SH_RESOLVED || apy->type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type==SRCONFLICT || apy->type==RRCONFLICT" , "tools/lemon/lemon.c", 1293, __extension__ __PRETTY_FUNCTION__ ); })) |
1286 | apx->type==SRCONFLICT ||((void) sizeof ((apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ? 1 : 0), __extension__ ({ if (apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ; else __assert_fail ("apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx->type==RRCONFLICT || apy->type==SH_RESOLVED || apy->type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type==SRCONFLICT || apy->type==RRCONFLICT" , "tools/lemon/lemon.c", 1293, __extension__ __PRETTY_FUNCTION__ ); })) |
1287 | apx->type==RRCONFLICT ||((void) sizeof ((apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ? 1 : 0), __extension__ ({ if (apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ; else __assert_fail ("apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx->type==RRCONFLICT || apy->type==SH_RESOLVED || apy->type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type==SRCONFLICT || apy->type==RRCONFLICT" , "tools/lemon/lemon.c", 1293, __extension__ __PRETTY_FUNCTION__ ); })) |
1288 | apy->type==SH_RESOLVED ||((void) sizeof ((apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ? 1 : 0), __extension__ ({ if (apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ; else __assert_fail ("apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx->type==RRCONFLICT || apy->type==SH_RESOLVED || apy->type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type==SRCONFLICT || apy->type==RRCONFLICT" , "tools/lemon/lemon.c", 1293, __extension__ __PRETTY_FUNCTION__ ); })) |
1289 | apy->type==RD_RESOLVED ||((void) sizeof ((apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ? 1 : 0), __extension__ ({ if (apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ; else __assert_fail ("apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx->type==RRCONFLICT || apy->type==SH_RESOLVED || apy->type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type==SRCONFLICT || apy->type==RRCONFLICT" , "tools/lemon/lemon.c", 1293, __extension__ __PRETTY_FUNCTION__ ); })) |
1290 | apy->type==SSCONFLICT ||((void) sizeof ((apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ? 1 : 0), __extension__ ({ if (apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ; else __assert_fail ("apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx->type==RRCONFLICT || apy->type==SH_RESOLVED || apy->type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type==SRCONFLICT || apy->type==RRCONFLICT" , "tools/lemon/lemon.c", 1293, __extension__ __PRETTY_FUNCTION__ ); })) |
1291 | apy->type==SRCONFLICT ||((void) sizeof ((apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ? 1 : 0), __extension__ ({ if (apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ; else __assert_fail ("apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx->type==RRCONFLICT || apy->type==SH_RESOLVED || apy->type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type==SRCONFLICT || apy->type==RRCONFLICT" , "tools/lemon/lemon.c", 1293, __extension__ __PRETTY_FUNCTION__ ); })) |
1292 | apy->type==RRCONFLICT((void) sizeof ((apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ? 1 : 0), __extension__ ({ if (apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ; else __assert_fail ("apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx->type==RRCONFLICT || apy->type==SH_RESOLVED || apy->type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type==SRCONFLICT || apy->type==RRCONFLICT" , "tools/lemon/lemon.c", 1293, __extension__ __PRETTY_FUNCTION__ ); })) |
1293 | )((void) sizeof ((apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ? 1 : 0), __extension__ ({ if (apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx ->type==RRCONFLICT || apy->type==SH_RESOLVED || apy-> type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type ==SRCONFLICT || apy->type==RRCONFLICT) ; else __assert_fail ("apx->type==SH_RESOLVED || apx->type==RD_RESOLVED || apx->type==SSCONFLICT || apx->type==SRCONFLICT || apx->type==RRCONFLICT || apy->type==SH_RESOLVED || apy->type==RD_RESOLVED || apy->type==SSCONFLICT || apy->type==SRCONFLICT || apy->type==RRCONFLICT" , "tools/lemon/lemon.c", 1293, __extension__ __PRETTY_FUNCTION__ ); })); |
1294 | /* The REDUCE/SHIFT case cannot happen because SHIFTs come before |
1295 | ** REDUCEs on the list. If we reach this point it must be because |
1296 | ** the parser conflict had already been resolved. */ |
1297 | } |
1298 | return errcnt; |
1299 | } |
1300 | /********************* From the file "configlist.c" *************************/ |
1301 | /* |
1302 | ** Routines to processing a configuration list and building a state |
1303 | ** in the LEMON parser generator. |
1304 | */ |
1305 | |
1306 | static struct config *freelist = 0; /* List of free configurations */ |
1307 | static struct config *current = 0; /* Top of list of configurations */ |
1308 | static struct config **currentend = 0; /* Last on list of configs */ |
1309 | static struct config *basis = 0; /* Top of list of basis configs */ |
1310 | static struct config **basisend = 0; /* End of list of basis configs */ |
1311 | |
1312 | /* Return a pointer to a new configuration */ |
1313 | PRIVATE struct config *newconfig(void){ |
1314 | return (struct config*)calloc(1, sizeof(struct config)); |
1315 | } |
1316 | |
1317 | /* The configuration "old" is no longer used */ |
1318 | PRIVATE void deleteconfig(struct config *old) |
1319 | { |
1320 | old->next = freelist; |
1321 | freelist = old; |
1322 | } |
1323 | |
1324 | /* Initialized the configuration list builder */ |
1325 | void Configlist_init(void){ |
1326 | current = 0; |
1327 | currentend = ¤t; |
1328 | basis = 0; |
1329 | basisend = &basis; |
1330 | Configtable_init(); |
1331 | return; |
1332 | } |
1333 | |
1334 | /* Initialized the configuration list builder */ |
1335 | void Configlist_reset(void){ |
1336 | current = 0; |
1337 | currentend = ¤t; |
1338 | basis = 0; |
1339 | basisend = &basis; |
1340 | Configtable_clear(0); |
1341 | return; |
1342 | } |
1343 | |
1344 | /* Add another configuration to the configuration list */ |
1345 | struct config *Configlist_add( |
1346 | struct rule *rp, /* The rule */ |
1347 | int dot /* Index into the RHS of the rule where the dot goes */ |
1348 | ){ |
1349 | struct config *cfp, model; |
1350 | |
1351 | assert( currentend!=0 )((void) sizeof ((currentend!=0) ? 1 : 0), __extension__ ({ if (currentend!=0) ; else __assert_fail ("currentend!=0", "tools/lemon/lemon.c" , 1351, __extension__ __PRETTY_FUNCTION__); })); |
1352 | model.rp = rp; |
1353 | model.dot = dot; |
1354 | cfp = Configtable_find(&model); |
1355 | if( cfp==0 ){ |
1356 | cfp = newconfig(); |
1357 | cfp->rp = rp; |
1358 | cfp->dot = dot; |
1359 | cfp->fws = SetNew(); |
1360 | cfp->stp = 0; |
1361 | cfp->fplp = cfp->bplp = 0; |
1362 | cfp->next = 0; |
1363 | cfp->bp = 0; |
1364 | *currentend = cfp; |
1365 | currentend = &cfp->next; |
1366 | Configtable_insert(cfp); |
1367 | } |
1368 | return cfp; |
1369 | } |
1370 | |
1371 | /* Add a basis configuration to the configuration list */ |
1372 | struct config *Configlist_addbasis(struct rule *rp, int dot) |
1373 | { |
1374 | struct config *cfp, model; |
1375 | |
1376 | assert( basisend!=0 )((void) sizeof ((basisend!=0) ? 1 : 0), __extension__ ({ if ( basisend!=0) ; else __assert_fail ("basisend!=0", "tools/lemon/lemon.c" , 1376, __extension__ __PRETTY_FUNCTION__); })); |
1377 | assert( currentend!=0 )((void) sizeof ((currentend!=0) ? 1 : 0), __extension__ ({ if (currentend!=0) ; else __assert_fail ("currentend!=0", "tools/lemon/lemon.c" , 1377, __extension__ __PRETTY_FUNCTION__); })); |
1378 | model.rp = rp; |
1379 | model.dot = dot; |
1380 | cfp = Configtable_find(&model); |
1381 | if( cfp==0 ){ |
1382 | cfp = newconfig(); |
1383 | cfp->rp = rp; |
1384 | cfp->dot = dot; |
1385 | cfp->fws = SetNew(); |
1386 | cfp->stp = 0; |
1387 | cfp->fplp = cfp->bplp = 0; |
1388 | cfp->next = 0; |
1389 | cfp->bp = 0; |
1390 | *currentend = cfp; |
1391 | currentend = &cfp->next; |
1392 | *basisend = cfp; |
1393 | basisend = &cfp->bp; |
1394 | Configtable_insert(cfp); |
1395 | } |
1396 | return cfp; |
1397 | } |
1398 | |
1399 | /* Compute the closure of the configuration list */ |
1400 | void Configlist_closure(struct lemon *lemp) |
1401 | { |
1402 | struct config *cfp, *newcfp; |
1403 | struct rule *rp, *newrp; |
1404 | struct symbol *sp, *xsp; |
1405 | int i, dot; |
1406 | |
1407 | assert( currentend!=0 )((void) sizeof ((currentend!=0) ? 1 : 0), __extension__ ({ if (currentend!=0) ; else __assert_fail ("currentend!=0", "tools/lemon/lemon.c" , 1407, __extension__ __PRETTY_FUNCTION__); })); |
1408 | for(cfp=current; cfp; cfp=cfp->next){ |
1409 | rp = cfp->rp; |
1410 | dot = cfp->dot; |
1411 | if( dot>=rp->nrhs ) continue; |
1412 | sp = rp->rhs[dot]; |
1413 | if( sp->type==NONTERMINAL ){ |
1414 | if( sp->rule==0 && sp!=lemp->errsym ){ |
1415 | ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.", |
1416 | sp->name); |
1417 | lemp->errorcnt++; |
1418 | } |
1419 | for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){ |
1420 | newcfp = Configlist_add(newrp,0); |
1421 | for(i=dot+1; i<rp->nrhs; i++){ |
1422 | xsp = rp->rhs[i]; |
1423 | if( xsp->type==TERMINAL ){ |
1424 | SetAdd(newcfp->fws,xsp->index); |
1425 | break; |
1426 | }else if( xsp->type==MULTITERMINAL ){ |
1427 | int k; |
1428 | for(k=0; k<xsp->nsubsym; k++){ |
1429 | SetAdd(newcfp->fws, xsp->subsym[k]->index); |
1430 | } |
1431 | break; |
1432 | }else{ |
1433 | SetUnion(newcfp->fws,xsp->firstset); |
1434 | if( xsp->lambda==LEMON_FALSE ) break; |
1435 | } |
1436 | } |
1437 | if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp); |
1438 | } |
1439 | } |
1440 | } |
1441 | return; |
1442 | } |
1443 | |
1444 | /* Sort the configuration list */ |
1445 | void Configlist_sort(void){ |
1446 | current = (struct config*)msort((char*)current,(char**)&(current->next), |
1447 | Configcmp); |
1448 | currentend = 0; |
1449 | return; |
1450 | } |
1451 | |
1452 | /* Sort the basis configuration list */ |
1453 | void Configlist_sortbasis(void){ |
1454 | basis = (struct config*)msort((char*)current,(char**)&(current->bp), |
1455 | Configcmp); |
1456 | basisend = 0; |
1457 | return; |
1458 | } |
1459 | |
1460 | /* Return a pointer to the head of the configuration list and |
1461 | ** reset the list */ |
1462 | struct config *Configlist_return(void){ |
1463 | struct config *old; |
1464 | old = current; |
1465 | current = 0; |
1466 | currentend = 0; |
1467 | return old; |
1468 | } |
1469 | |
1470 | /* Return a pointer to the head of the configuration list and |
1471 | ** reset the list */ |
1472 | struct config *Configlist_basis(void){ |
1473 | struct config *old; |
1474 | old = basis; |
1475 | basis = 0; |
1476 | basisend = 0; |
1477 | return old; |
1478 | } |
1479 | |
1480 | /* Free all elements of the given configuration list */ |
1481 | void Configlist_eat(struct config *cfp) |
1482 | { |
1483 | struct config *nextcfp; |
1484 | for(; cfp; cfp=nextcfp){ |
1485 | nextcfp = cfp->next; |
1486 | assert( cfp->fplp==0 )((void) sizeof ((cfp->fplp==0) ? 1 : 0), __extension__ ({ if (cfp->fplp==0) ; else __assert_fail ("cfp->fplp==0", "tools/lemon/lemon.c" , 1486, __extension__ __PRETTY_FUNCTION__); })); |
1487 | assert( cfp->bplp==0 )((void) sizeof ((cfp->bplp==0) ? 1 : 0), __extension__ ({ if (cfp->bplp==0) ; else __assert_fail ("cfp->bplp==0", "tools/lemon/lemon.c" , 1487, __extension__ __PRETTY_FUNCTION__); })); |
1488 | if( cfp->fws ) SetFree(cfp->fws); |
1489 | deleteconfig(cfp); |
1490 | } |
1491 | return; |
1492 | } |
1493 | /***************** From the file "error.c" *********************************/ |
1494 | /* |
1495 | ** Code for printing error message. |
1496 | */ |
1497 | |
1498 | void ErrorMsg(const char *filename, int lineno, const char *format, ...){ |
1499 | va_list ap; |
1500 | fprintf(stderrstderr, "%s:%d: ", filename, lineno); |
1501 | va_start(ap, format)__builtin_va_start(ap, format); |
1502 | vfprintf(stderrstderr,format,ap); |
1503 | va_end(ap)__builtin_va_end(ap); |
1504 | fprintf(stderrstderr, "\n"); |
1505 | } |
1506 | /**************** From the file "main.c" ************************************/ |
1507 | /* |
1508 | ** Main program file for the LEMON parser generator. |
1509 | */ |
1510 | |
1511 | /* Report an out-of-memory condition and abort. This function |
1512 | ** is used mostly by the "MemoryCheck" macro in struct.h |
1513 | */ |
1514 | void memory_error(void){ |
1515 | fprintf(stderrstderr,"Out of memory. Aborting...\n"); |
1516 | exit(1); |
1517 | } |
1518 | |
1519 | static int nDefine = 0; /* Number of -D options on the command line */ |
1520 | static char **azDefine = 0; /* Name of the -D macros */ |
1521 | |
1522 | /* This routine is called with the argument to each -D command-line option. |
1523 | ** Add the macro defined to the azDefine array. |
1524 | */ |
1525 | static void handle_D_option(char *z){ |
1526 | char **paz; |
1527 | nDefine++; |
1528 | azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine); |
1529 | if( azDefine==0 ){ |
1530 | fprintf(stderrstderr,"out of memory\n"); |
1531 | exit(1); |
1532 | } |
1533 | paz = &azDefine[nDefine-1]; |
1534 | *paz = (char *) malloc( lemonStrlen(z)((int)strlen(z))+1 ); |
1535 | if( *paz==0 ){ |
1536 | fprintf(stderrstderr,"out of memory\n"); |
1537 | exit(1); |
1538 | } |
1539 | lemon_strcpy(*paz, z); |
1540 | for(z=*paz; *z && *z!='='; z++){} |
1541 | *z = 0; |
1542 | } |
1543 | |
1544 | /* Rember the name of the output directory |
1545 | */ |
1546 | static char *outputDir = NULL((void*)0); |
1547 | static void handle_d_option(char *z){ |
1548 | outputDir = (char *) malloc( lemonStrlen(z)((int)strlen(z))+1 ); |
1549 | if( outputDir==0 ){ |
1550 | fprintf(stderrstderr,"out of memory\n"); |
1551 | exit(1); |
1552 | } |
1553 | lemon_strcpy(outputDir, z); |
1554 | } |
1555 | |
1556 | static char *user_templatename = NULL((void*)0); |
1557 | static void handle_T_option(char *z){ |
1558 | user_templatename = (char *) malloc( lemonStrlen(z)((int)strlen(z))+1 ); |
1559 | if( user_templatename==0 ){ |
1560 | memory_error(); |
1561 | } |
1562 | lemon_strcpy(user_templatename, z); |
1563 | } |
1564 | |
1565 | /* Merge together to lists of rules ordered by rule.iRule */ |
1566 | static struct rule *Rule_merge(struct rule *pA, struct rule *pB){ |
1567 | struct rule *pFirst = 0; |
1568 | struct rule **ppPrev = &pFirst; |
1569 | while( pA && pB ){ |
1570 | if( pA->iRule<pB->iRule ){ |
1571 | *ppPrev = pA; |
1572 | ppPrev = &pA->next; |
1573 | pA = pA->next; |
1574 | }else{ |
1575 | *ppPrev = pB; |
1576 | ppPrev = &pB->next; |
1577 | pB = pB->next; |
1578 | } |
1579 | } |
1580 | if( pA ){ |
1581 | *ppPrev = pA; |
1582 | }else{ |
1583 | *ppPrev = pB; |
1584 | } |
1585 | return pFirst; |
1586 | } |
1587 | |
1588 | /* |
1589 | ** Sort a list of rules in order of increasing iRule value |
1590 | */ |
1591 | static struct rule *Rule_sort(struct rule *rp){ |
1592 | unsigned int i; |
1593 | struct rule *pNext; |
1594 | struct rule *x[32]; |
1595 | memset(x, 0, sizeof(x)); |
1596 | while( rp ){ |
1597 | pNext = rp->next; |
1598 | rp->next = 0; |
1599 | for(i=0; i<sizeof(x)/sizeof(x[0])-1 && x[i]; i++){ |
1600 | rp = Rule_merge(x[i], rp); |
1601 | x[i] = 0; |
1602 | } |
1603 | x[i] = rp; |
1604 | rp = pNext; |
1605 | } |
1606 | rp = 0; |
1607 | for(i=0; i<sizeof(x)/sizeof(x[0]); i++){ |
1608 | rp = Rule_merge(x[i], rp); |
1609 | } |
1610 | return rp; |
1611 | } |
1612 | |
1613 | /* forward reference */ |
1614 | static const char *minimum_size_type(int lwr, int upr, int *pnByte); |
1615 | |
1616 | /* Print a single line of the "Parser Stats" output |
1617 | */ |
1618 | static void stats_line(const char *zLabel, int iValue){ |
1619 | int nLabel = lemonStrlen(zLabel)((int)strlen(zLabel)); |
1620 | printf(" %s%.*s %5d\n", zLabel, |
1621 | 35-nLabel, "................................", |
1622 | iValue); |
1623 | } |
1624 | |
1625 | /* The main program. Parse the command line and do it... */ |
1626 | int main(int argc, char **argv){ |
1627 | static int version = 0; |
1628 | static int rpflag = 0; |
1629 | static int basisflag = 0; |
1630 | static int compress = 0; |
1631 | static int quiet = 0; |
1632 | static int statistics = 0; |
1633 | static int mhflag = 0; |
1634 | static int nolinenosflag = 0; |
1635 | static int noResort = 0; |
1636 | static int sqlFlag = 0; |
1637 | static int printPP = 0; |
1638 | |
1639 | static struct s_options options[] = { |
1640 | {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."}, |
1641 | {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."}, |
1642 | {OPT_FSTR, "d", (char*)&handle_d_option, "Output directory. Default '.'"}, |
1643 | {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."}, |
1644 | {OPT_FLAG, "E", (char*)&printPP, "Print input file after preprocessing."}, |
1645 | {OPT_FSTR, "f", 0, "Ignored. (Placeholder for -f compiler options.)"}, |
1646 | {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."}, |
1647 | {OPT_FSTR, "I", 0, "Ignored. (Placeholder for '-I' compiler options.)"}, |
1648 | {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."}, |
1649 | {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."}, |
1650 | {OPT_FSTR, "O", 0, "Ignored. (Placeholder for '-O' compiler options.)"}, |
1651 | {OPT_FLAG, "p", (char*)&showPrecedenceConflict, |
1652 | "Show conflicts resolved by precedence rules"}, |
1653 | {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."}, |
1654 | {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"}, |
1655 | {OPT_FLAG, "s", (char*)&statistics, |
1656 | "Print parser stats to standard output."}, |
1657 | {OPT_FLAG, "S", (char*)&sqlFlag, |
1658 | "Generate the *.sql file describing the parser tables."}, |
1659 | {OPT_FLAG, "x", (char*)&version, "Print the version number."}, |
1660 | {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."}, |
1661 | {OPT_FSTR, "W", 0, "Ignored. (Placeholder for '-W' compiler options.)"}, |
1662 | {OPT_FLAG,0,0,0} |
1663 | }; |
1664 | int i; |
1665 | int exitcode; |
1666 | struct lemon lem; |
1667 | struct rule *rp; |
1668 | |
1669 | (void)argc; |
1670 | OptInit(argv,options,stderrstderr); |
1671 | if( version ){ |
| |
1672 | printf("Lemon version 1.0\n"); |
1673 | exit(0); |
1674 | } |
1675 | if( OptNArgs()!=1 ){ |
| |
1676 | fprintf(stderrstderr,"Exactly one filename argument is required.\n"); |
1677 | exit(1); |
1678 | } |
1679 | memset(&lem, 0, sizeof(lem)); |
1680 | lem.errorcnt = 0; |
1681 | |
1682 | /* Initialize the machine */ |
1683 | Strsafe_init(); |
1684 | Symbol_init(); |
1685 | State_init(); |
1686 | lem.argv0 = argv[0]; |
1687 | lem.filename = OptArg(0); |
1688 | lem.basisflag = basisflag; |
1689 | lem.nolinenosflag = nolinenosflag; |
1690 | lem.printPreprocessed = printPP; |
1691 | Symbol_new("$"); |
1692 | |
1693 | /* Parse the input file */ |
1694 | Parse(&lem); |
| 3 | | Value assigned to 'lem.rule' | |
|
1695 | if( lem.printPreprocessed || lem.errorcnt ) exit(lem.errorcnt); |
| 4 | | Assuming field 'printPreprocessed' is 0 | |
|
| 5 | | Assuming field 'errorcnt' is 0 | |
|
| |
1696 | if( lem.nrule==0 ){ |
| 7 | | Assuming field 'nrule' is not equal to 0 | |
|
| |
1697 | fprintf(stderrstderr,"Empty grammar.\n"); |
1698 | exit(1); |
1699 | } |
1700 | lem.errsym = Symbol_find("error"); |
1701 | |
1702 | /* Count and index the symbols of the grammar */ |
1703 | Symbol_new("{default}"); |
1704 | lem.nsymbol = Symbol_count(); |
1705 | lem.symbols = Symbol_arrayof(); |
1706 | for(i=0; i8.1 | 'i' is >= field 'nsymbol' | <lem.nsymbol; i++) lem.symbols[i]->index = i; |
| 9 | | Loop condition is false. Execution continues on line 1707 | |
|
1707 | qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp); |
1708 | for(i=0; i9.1 | 'i' is >= field 'nsymbol' | <lem.nsymbol; i++) lem.symbols[i]->index = i; |
| 10 | | Loop condition is false. Execution continues on line 1709 | |
|
1709 | while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; } |
| 11 | | Assuming field 'type' is not equal to MULTITERMINAL | |
|
| 12 | | Loop condition is false. Execution continues on line 1710 | |
|
1710 | assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 )((void) sizeof ((strcmp(lem.symbols[i-1]->name,"{default}" )==0) ? 1 : 0), __extension__ ({ if (strcmp(lem.symbols[i-1]-> name,"{default}")==0) ; else __assert_fail ("strcmp(lem.symbols[i-1]->name,\"{default}\")==0" , "tools/lemon/lemon.c", 1710, __extension__ __PRETTY_FUNCTION__ ); })); |
| |
1711 | lem.nsymbol = i - 1; |
1712 | for(i=1; ISUPPER(lem.symbols[i]->name[0])((*__ctype_b_loc ())[(int) (((unsigned char)(lem.symbols[i]-> name[0])))] & (unsigned short int) _ISupper); i++); |
| 14 | | Loop condition is false. Execution continues on line 1713 | |
|
1713 | lem.nterminal = i; |
1714 | |
1715 | /* Assign sequential rule numbers. Start with 0. Put rules that have no |
1716 | ** reduce action C-code associated with them last, so that the switch() |
1717 | ** statement that selects reduction actions will have a smaller jump table. |
1718 | */ |
1719 | for(i=0, rp=lem.rule; rp; rp=rp->next){ |
| 15 | | Assuming pointer value is null | |
|
| 16 | | Loop condition is false. Execution continues on line 1722 | |
|
1720 | rp->iRule = rp->code ? i++ : -1; |
1721 | } |
1722 | lem.nruleWithAction = i; |
1723 | for(rp=lem.rule; rp; rp=rp->next){ |
| 17 | | Loop condition is false. Execution continues on line 1726 | |
|
1724 | if( rp->iRule<0 ) rp->iRule = i++; |
1725 | } |
1726 | lem.startRule = lem.rule; |
| 18 | | Null pointer value stored to 'lem.startRule' | |
|
1727 | lem.rule = Rule_sort(lem.rule); |
1728 | |
1729 | /* Generate a reprint of the grammar, if requested on the command line */ |
1730 | if( rpflag ){ |
| |
| |
1731 | Reprint(&lem); |
1732 | }else{ |
1733 | /* Initialize the size for all follow and first sets */ |
1734 | SetSize(lem.nterminal+1); |
1735 | |
1736 | /* Find the precedence for every production rule (that has one) */ |
1737 | FindRulePrecedences(&lem); |
| 21 | | Calling 'FindRulePrecedences' | |
|
| 25 | | Returning from 'FindRulePrecedences' | |
|
1738 | |
1739 | /* Compute the lambda-nonterminals and the first-sets for every |
1740 | ** nonterminal */ |
1741 | FindFirstSets(&lem); |
| 26 | | Calling 'FindFirstSets' | |
|
| 35 | | Returning from 'FindFirstSets' | |
|
1742 | |
1743 | /* Compute all LR(0) states. Also record follow-set propagation |
1744 | ** links so that the follow-set can be computed later */ |
1745 | lem.nstate = 0; |
1746 | FindStates(&lem); |
| |
1747 | lem.sorted = State_arrayof(); |
1748 | |
1749 | /* Tie up loose ends on the propagation links */ |
1750 | FindLinks(&lem); |
1751 | |
1752 | /* Compute the follow set of every reducible configuration */ |
1753 | FindFollowSets(&lem); |
1754 | |
1755 | /* Compute the action tables */ |
1756 | FindActions(&lem); |
1757 | |
1758 | /* Compress the action tables */ |
1759 | if( compress==0 ) CompressTables(&lem); |
1760 | |
1761 | /* Reorder and renumber the states so that states with fewer choices |
1762 | ** occur at the end. This is an optimization that helps make the |
1763 | ** generated parser tables smaller. */ |
1764 | if( noResort==0 ) ResortStates(&lem); |
1765 | |
1766 | /* Generate a report of the parser generated. (the "y.output" file) */ |
1767 | if( !quiet ) ReportOutput(&lem); |
1768 | |
1769 | /* Generate the source code for the parser */ |
1770 | ReportTable(&lem, mhflag, sqlFlag); |
1771 | |
1772 | /* Produce a header file for use by the scanner. (This step is |
1773 | ** omitted if the "-m" option is used because makeheaders will |
1774 | ** generate the file for us.) */ |
1775 | if( !mhflag ) ReportHeader(&lem); |
1776 | } |
1777 | if( statistics ){ |
1778 | printf("Parser statistics:\n"); |
1779 | stats_line("terminal symbols", lem.nterminal); |
1780 | stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal); |
1781 | stats_line("total symbols", lem.nsymbol); |
1782 | stats_line("rules", lem.nrule); |
1783 | stats_line("states", lem.nxstate); |
1784 | stats_line("conflicts", lem.nconflict); |
1785 | stats_line("action table entries", lem.nactiontab); |
1786 | stats_line("lookahead table entries", lem.nlookaheadtab); |
1787 | stats_line("total table size (bytes)", lem.tablesize); |
1788 | } |
1789 | if( lem.nconflict > 0 ){ |
1790 | fprintf(stderrstderr,"%d parsing conflicts.\n",lem.nconflict); |
1791 | } |
1792 | |
1793 | /* return 0 on success, 1 on failure. */ |
1794 | exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0; |
1795 | exit(exitcode); |
1796 | return (exitcode); |
1797 | } |
1798 | /******************** From the file "msort.c" *******************************/ |
1799 | /* |
1800 | ** A generic merge-sort program. |
1801 | ** |
1802 | ** USAGE: |
1803 | ** Let "ptr" be a pointer to some structure which is at the head of |
1804 | ** a null-terminated list. Then to sort the list call: |
1805 | ** |
1806 | ** ptr = msort(ptr,&(ptr->next),cmpfnc); |
1807 | ** |
1808 | ** In the above, "cmpfnc" is a pointer to a function which compares |
1809 | ** two instances of the structure and returns an integer, as in |
1810 | ** strcmp. The second argument is a pointer to the pointer to the |
1811 | ** second element of the linked list. This address is used to compute |
1812 | ** the offset to the "next" field within the structure. The offset to |
1813 | ** the "next" field must be constant for all structures in the list. |
1814 | ** |
1815 | ** The function returns a new pointer which is the head of the list |
1816 | ** after sorting. |
1817 | ** |
1818 | ** ALGORITHM: |
1819 | ** Merge-sort. |
1820 | */ |
1821 | |
1822 | /* |
1823 | ** Return a pointer to the next structure in the linked list. |
1824 | */ |
1825 | #define NEXT(A)(*(char**)(((char*)A)+offset)) (*(char**)(((char*)A)+offset)) |
1826 | |
1827 | /* |
1828 | ** Inputs: |
1829 | ** a: A sorted, null-terminated linked list. (May be null). |
1830 | ** b: A sorted, null-terminated linked list. (May be null). |
1831 | ** cmp: A pointer to the comparison function. |
1832 | ** offset: Offset in the structure to the "next" field. |
1833 | ** |
1834 | ** Return Value: |
1835 | ** A pointer to the head of a sorted list containing the elements |
1836 | ** of both a and b. |
1837 | ** |
1838 | ** Side effects: |
1839 | ** The "next" pointers for elements in the lists a and b are |
1840 | ** changed. |
1841 | */ |
1842 | static char *merge( |
1843 | char *a, |
1844 | char *b, |
1845 | int (*cmp)(const char*,const char*), |
1846 | int offset |
1847 | ){ |
1848 | char *ptr, *head; |
1849 | |
1850 | if( a==0 ){ |
1851 | head = b; |
1852 | }else if( b==0 ){ |
1853 | head = a; |
1854 | }else{ |
1855 | if( (*cmp)(a,b)<=0 ){ |
1856 | ptr = a; |
1857 | a = NEXT(a)(*(char**)(((char*)a)+offset)); |
1858 | }else{ |
1859 | ptr = b; |
1860 | b = NEXT(b)(*(char**)(((char*)b)+offset)); |
1861 | } |
1862 | head = ptr; |
1863 | while( a && b ){ |
1864 | if( (*cmp)(a,b)<=0 ){ |
1865 | NEXT(ptr)(*(char**)(((char*)ptr)+offset)) = a; |
1866 | ptr = a; |
1867 | a = NEXT(a)(*(char**)(((char*)a)+offset)); |
1868 | }else{ |
1869 | NEXT(ptr)(*(char**)(((char*)ptr)+offset)) = b; |
1870 | ptr = b; |
1871 | b = NEXT(b)(*(char**)(((char*)b)+offset)); |
1872 | } |
1873 | } |
1874 | if( a ) NEXT(ptr)(*(char**)(((char*)ptr)+offset)) = a; |
1875 | else NEXT(ptr)(*(char**)(((char*)ptr)+offset)) = b; |
1876 | } |
1877 | return head; |
1878 | } |
1879 | |
1880 | /* |
1881 | ** Inputs: |
1882 | ** list: Pointer to a singly-linked list of structures. |
1883 | ** next: Pointer to pointer to the second element of the list. |
1884 | ** cmp: A comparison function. |
1885 | ** |
1886 | ** Return Value: |
1887 | ** A pointer to the head of a sorted list containing the elements |
1888 | ** originally in list. |
1889 | ** |
1890 | ** Side effects: |
1891 | ** The "next" pointers for elements in list are changed. |
1892 | */ |
1893 | #define LISTSIZE30 30 |
1894 | static char *msort( |
1895 | char *list, |
1896 | char **next, |
1897 | int (*cmp)(const char*,const char*) |
1898 | ){ |
1899 | unsigned long offset; |
1900 | char *ep; |
1901 | char *set[LISTSIZE30]; |
1902 | int i; |
1903 | offset = (unsigned long)((char*)next - (char*)list); |
1904 | for(i=0; i<LISTSIZE30; i++) set[i] = 0; |
1905 | while( list ){ |
1906 | ep = list; |
1907 | list = NEXT(list)(*(char**)(((char*)list)+offset)); |
1908 | NEXT(ep)(*(char**)(((char*)ep)+offset)) = 0; |
1909 | for(i=0; i<LISTSIZE30-1 && set[i]!=0; i++){ |
1910 | ep = merge(ep,set[i],cmp,offset); |
1911 | set[i] = 0; |
1912 | } |
1913 | set[i] = ep; |
1914 | } |
1915 | ep = 0; |
1916 | for(i=0; i<LISTSIZE30; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset); |
1917 | return ep; |
1918 | } |
1919 | /************************ From the file "option.c" **************************/ |
1920 | static char **g_argv; |
1921 | static struct s_options *op; |
1922 | static FILE *errstream; |
1923 | |
1924 | #define ISOPT(X)((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0) |
1925 | |
1926 | /* |
1927 | ** Print the command line with a carrot pointing to the k-th character |
1928 | ** of the n-th field. |
1929 | */ |
1930 | static void errline(int n, int k, FILE *err) |
1931 | { |
1932 | int spcnt, i; |
1933 | if( g_argv[0] ){ |
1934 | fprintf(err,"%s",g_argv[0]); |
1935 | spcnt = lemonStrlen(g_argv[0])((int)strlen(g_argv[0])) + 1; |
1936 | }else{ |
1937 | spcnt = 0; |
1938 | } |
1939 | for(i=1; i<n && g_argv[i]; i++){ |
1940 | fprintf(err," %s",g_argv[i]); |
1941 | spcnt += lemonStrlen(g_argv[i])((int)strlen(g_argv[i]))+1; |
1942 | } |
1943 | spcnt += k; |
1944 | for(; g_argv[i]; i++) fprintf(err," %s",g_argv[i]); |
1945 | if( spcnt<20 ){ |
1946 | fprintf(err,"\n%*s^-- here\n",spcnt,""); |
1947 | }else{ |
1948 | fprintf(err,"\n%*shere --^\n",spcnt-7,""); |
1949 | } |
1950 | } |
1951 | |
1952 | /* |
1953 | ** Return the index of the N-th non-switch argument. Return -1 |
1954 | ** if N is out of range. |
1955 | */ |
1956 | static int argindex(int n) |
1957 | { |
1958 | int i; |
1959 | int dashdash = 0; |
1960 | if( g_argv!=0 && *g_argv!=0 ){ |
1961 | for(i=1; g_argv[i]; i++){ |
1962 | if( dashdash || !ISOPT(g_argv[i])((g_argv[i])[0]=='-'||(g_argv[i])[0]=='+'||strchr((g_argv[i]) ,'=')!=0) ){ |
1963 | if( n==0 ) return i; |
1964 | n--; |
1965 | } |
1966 | if( strcmp(g_argv[i],"--")==0 ) dashdash = 1; |
1967 | } |
1968 | } |
1969 | return -1; |
1970 | } |
1971 | |
1972 | static char emsg[] = "Command line syntax error: "; |
1973 | |
1974 | /* |
1975 | ** Process a flag command line argument. |
1976 | */ |
1977 | static int handleflags(int i, FILE *err) |
1978 | { |
1979 | int v; |
1980 | int errcnt = 0; |
1981 | int j; |
1982 | for(j=0; op[j].label; j++){ |
1983 | if( strncmp(&g_argv[i][1],op[j].label,lemonStrlen(op[j].label)((int)strlen(op[j].label)))==0 ) break; |
1984 | } |
1985 | v = g_argv[i][0]=='-' ? 1 : 0; |
1986 | if( op[j].label==0 ){ |
1987 | if( err ){ |
1988 | fprintf(err,"%sundefined option.\n",emsg); |
1989 | errline(i,1,err); |
1990 | } |
1991 | errcnt++; |
1992 | }else if( op[j].arg==0 ){ |
1993 | /* Ignore this option */ |
1994 | }else if( op[j].type==OPT_FLAG ){ |
1995 | *((int*)op[j].arg) = v; |
1996 | }else if( op[j].type==OPT_FFLAG ){ |
1997 | (*(void(*)(int))(op[j].arg))(v); |
1998 | }else if( op[j].type==OPT_FSTR ){ |
1999 | (*(void(*)(char *))(op[j].arg))(&g_argv[i][2]); |
2000 | }else{ |
2001 | if( err ){ |
2002 | fprintf(err,"%smissing argument on switch.\n",emsg); |
2003 | errline(i,1,err); |
2004 | } |
2005 | errcnt++; |
2006 | } |
2007 | return errcnt; |
2008 | } |
2009 | |
2010 | /* |
2011 | ** Process a command line switch which has an argument. |
2012 | */ |
2013 | static int handleswitch(int i, FILE *err) |
2014 | { |
2015 | int lv = 0; |
2016 | double dv = 0.0; |
2017 | char *sv = 0, *end; |
2018 | char *cp; |
2019 | int j; |
2020 | int errcnt = 0; |
2021 | cp = strchr(g_argv[i],'='); |
2022 | assert( cp!=0 )((void) sizeof ((cp!=0) ? 1 : 0), __extension__ ({ if (cp!=0) ; else __assert_fail ("cp!=0", "tools/lemon/lemon.c", 2022, __extension__ __PRETTY_FUNCTION__); })); |
2023 | *cp = 0; |
2024 | for(j=0; op[j].label; j++){ |
2025 | if( strcmp(g_argv[i],op[j].label)==0 ) break; |
2026 | } |
2027 | *cp = '='; |
2028 | if( op[j].label==0 ){ |
2029 | if( err ){ |
2030 | fprintf(err,"%sundefined option.\n",emsg); |
2031 | errline(i,0,err); |
2032 | } |
2033 | errcnt++; |
2034 | }else{ |
2035 | cp++; |
2036 | switch( op[j].type ){ |
2037 | case OPT_FLAG: |
2038 | case OPT_FFLAG: |
2039 | if( err ){ |
2040 | fprintf(err,"%soption requires an argument.\n",emsg); |
2041 | errline(i,0,err); |
2042 | } |
2043 | errcnt++; |
2044 | break; |
2045 | case OPT_DBL: |
2046 | case OPT_FDBL: |
2047 | dv = strtod(cp,&end); |
2048 | if( *end ){ |
2049 | if( err ){ |
2050 | fprintf(err, |
2051 | "%sillegal character in floating-point argument.\n",emsg); |
2052 | errline(i,(int)((char*)end-(char*)g_argv[i]),err); |
2053 | } |
2054 | errcnt++; |
2055 | } |
2056 | break; |
2057 | case OPT_INT: |
2058 | case OPT_FINT: |
2059 | lv = strtol(cp,&end,0); |
2060 | if( *end ){ |
2061 | if( err ){ |
2062 | fprintf(err,"%sillegal character in integer argument.\n",emsg); |
2063 | errline(i,(int)((char*)end-(char*)g_argv[i]),err); |
2064 | } |
2065 | errcnt++; |
2066 | } |
2067 | break; |
2068 | case OPT_STR: |
2069 | case OPT_FSTR: |
2070 | sv = cp; |
2071 | break; |
2072 | } |
2073 | switch( op[j].type ){ |
2074 | case OPT_FLAG: |
2075 | case OPT_FFLAG: |
2076 | break; |
2077 | case OPT_DBL: |
2078 | *(double*)(op[j].arg) = dv; |
2079 | break; |
2080 | case OPT_FDBL: |
2081 | (*(void(*)(double))(op[j].arg))(dv); |
2082 | break; |
2083 | case OPT_INT: |
2084 | *(int*)(op[j].arg) = lv; |
2085 | break; |
2086 | case OPT_FINT: |
2087 | (*(void(*)(int))(op[j].arg))((int)lv); |
2088 | break; |
2089 | case OPT_STR: |
2090 | *(char**)(op[j].arg) = sv; |
2091 | break; |
2092 | case OPT_FSTR: |
2093 | (*(void(*)(char *))(op[j].arg))(sv); |
2094 | break; |
2095 | } |
2096 | } |
2097 | return errcnt; |
2098 | } |
2099 | |
2100 | int OptInit(char **a, struct s_options *o, FILE *err) |
2101 | { |
2102 | int errcnt = 0; |
2103 | g_argv = a; |
2104 | op = o; |
2105 | errstream = err; |
2106 | if( g_argv && *g_argv && op ){ |
2107 | int i; |
2108 | for(i=1; g_argv[i]; i++){ |
2109 | if( strcmp(g_argv[i],"--")==0 ) break; |
2110 | if( g_argv[i][0]=='+' || g_argv[i][0]=='-' ){ |
2111 | errcnt += handleflags(i,err); |
2112 | }else if( strchr(g_argv[i],'=') ){ |
2113 | errcnt += handleswitch(i,err); |
2114 | } |
2115 | } |
2116 | } |
2117 | if( errcnt>0 ){ |
2118 | fprintf(err,"Valid command line options for \"%s\" are:\n",*a); |
2119 | OptPrint(); |
2120 | exit(1); |
2121 | } |
2122 | return 0; |
2123 | } |
2124 | |
2125 | int OptNArgs(void){ |
2126 | int cnt = 0; |
2127 | int dashdash = 0; |
2128 | int i; |
2129 | if( g_argv!=0 && g_argv[0]!=0 ){ |
2130 | for(i=1; g_argv[i]; i++){ |
2131 | if( dashdash || !ISOPT(g_argv[i])((g_argv[i])[0]=='-'||(g_argv[i])[0]=='+'||strchr((g_argv[i]) ,'=')!=0) ) cnt++; |
2132 | if( strcmp(g_argv[i],"--")==0 ) dashdash = 1; |
2133 | } |
2134 | } |
2135 | return cnt; |
2136 | } |
2137 | |
2138 | char *OptArg(int n) |
2139 | { |
2140 | int i; |
2141 | i = argindex(n); |
2142 | return i>=0 ? g_argv[i] : 0; |
2143 | } |
2144 | |
2145 | void OptErr(int n) |
2146 | { |
2147 | int i; |
2148 | i = argindex(n); |
2149 | if( i>=0 ) errline(i,0,errstream); |
2150 | } |
2151 | |
2152 | void OptPrint(void){ |
2153 | int i; |
2154 | int max, len; |
2155 | max = 0; |
2156 | for(i=0; op[i].label; i++){ |
2157 | len = lemonStrlen(op[i].label)((int)strlen(op[i].label)) + 1; |
2158 | switch( op[i].type ){ |
2159 | case OPT_FLAG: |
2160 | case OPT_FFLAG: |
2161 | break; |
2162 | case OPT_INT: |
2163 | case OPT_FINT: |
2164 | len += 9; /* length of "<integer>" */ |
2165 | break; |
2166 | case OPT_DBL: |
2167 | case OPT_FDBL: |
2168 | len += 6; /* length of "<real>" */ |
2169 | break; |
2170 | case OPT_STR: |
2171 | case OPT_FSTR: |
2172 | len += 8; /* length of "<string>" */ |
2173 | break; |
2174 | } |
2175 | if( len>max ) max = len; |
2176 | } |
2177 | for(i=0; op[i].label; i++){ |
2178 | switch( op[i].type ){ |
2179 | case OPT_FLAG: |
2180 | case OPT_FFLAG: |
2181 | fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message); |
2182 | break; |
2183 | case OPT_INT: |
2184 | case OPT_FINT: |
2185 | fprintf(errstream," -%s<integer>%*s %s\n",op[i].label, |
2186 | (int)(max-lemonStrlen(op[i].label)((int)strlen(op[i].label))-9),"",op[i].message); |
2187 | break; |
2188 | case OPT_DBL: |
2189 | case OPT_FDBL: |
2190 | fprintf(errstream," -%s<real>%*s %s\n",op[i].label, |
2191 | (int)(max-lemonStrlen(op[i].label)((int)strlen(op[i].label))-6),"",op[i].message); |
2192 | break; |
2193 | case OPT_STR: |
2194 | case OPT_FSTR: |
2195 | fprintf(errstream," -%s<string>%*s %s\n",op[i].label, |
2196 | (int)(max-lemonStrlen(op[i].label)((int)strlen(op[i].label))-8),"",op[i].message); |
2197 | break; |
2198 | } |
2199 | } |
2200 | } |
2201 | /*********************** From the file "parse.c" ****************************/ |
2202 | /* |
2203 | ** Input file parser for the LEMON parser generator. |
2204 | */ |
2205 | |
2206 | /* The state of the parser */ |
2207 | enum e_state { |
2208 | INITIALIZE, |
2209 | WAITING_FOR_DECL_OR_RULE, |
2210 | WAITING_FOR_DECL_KEYWORD, |
2211 | WAITING_FOR_DECL_ARG, |
2212 | WAITING_FOR_PRECEDENCE_SYMBOL, |
2213 | WAITING_FOR_ARROW, |
2214 | IN_RHS, |
2215 | LHS_ALIAS_1, |
2216 | LHS_ALIAS_2, |
2217 | LHS_ALIAS_3, |
2218 | RHS_ALIAS_1, |
2219 | RHS_ALIAS_2, |
2220 | PRECEDENCE_MARK_1, |
2221 | PRECEDENCE_MARK_2, |
2222 | RESYNC_AFTER_RULE_ERROR, |
2223 | RESYNC_AFTER_DECL_ERROR, |
2224 | WAITING_FOR_DESTRUCTOR_SYMBOL, |
2225 | WAITING_FOR_DATATYPE_SYMBOL, |
2226 | WAITING_FOR_FALLBACK_ID, |
2227 | WAITING_FOR_WILDCARD_ID, |
2228 | WAITING_FOR_CLASS_ID, |
2229 | WAITING_FOR_CLASS_TOKEN, |
2230 | WAITING_FOR_TOKEN_NAME |
2231 | }; |
2232 | struct pstate { |
2233 | char *filename; /* Name of the input file */ |
2234 | int tokenlineno; /* Linenumber at which current token starts */ |
2235 | int errorcnt; /* Number of errors so far */ |
2236 | char *tokenstart; /* Text of current token */ |
2237 | struct lemon *gp; /* Global state vector */ |
2238 | enum e_state state; /* The state of the parser */ |
2239 | struct symbol *fallback; /* The fallback token */ |
2240 | struct symbol *tkclass; /* Token class symbol */ |
2241 | struct symbol *lhs; /* Left-hand side of current rule */ |
2242 | const char *lhsalias; /* Alias for the LHS */ |
2243 | int nrhs; /* Number of right-hand side symbols seen */ |
2244 | struct symbol *rhs[MAXRHS1000]; /* RHS symbols */ |
2245 | const char *alias[MAXRHS1000]; /* Aliases for each RHS symbol (or NULL) */ |
2246 | struct rule *prevrule; /* Previous rule parsed */ |
2247 | const char *declkeyword; /* Keyword of a declaration */ |
2248 | char **declargslot; /* Where the declaration argument should be put */ |
2249 | int insertLineMacro; /* Add #line before declaration insert */ |
2250 | int *decllinenoslot; /* Where to write declaration line number */ |
2251 | enum e_assoc declassoc; /* Assign this association to decl arguments */ |
2252 | int preccounter; /* Assign this precedence to decl arguments */ |
2253 | struct rule *firstrule; /* Pointer to first rule in the grammar */ |
2254 | struct rule *lastrule; /* Pointer to the most recently parsed rule */ |
2255 | }; |
2256 | |
2257 | /* Parse a single token */ |
2258 | static void parseonetoken(struct pstate *psp) |
2259 | { |
2260 | const char *x; |
2261 | x = Strsafe(psp->tokenstart); /* Save the token permanently */ |
2262 | #if 0 |
2263 | printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno, |
2264 | x,psp->state); |
2265 | #endif |
2266 | switch( psp->state ){ |
2267 | case INITIALIZE: |
2268 | psp->prevrule = 0; |
2269 | psp->preccounter = 0; |
2270 | psp->firstrule = psp->lastrule = 0; |
2271 | psp->gp->nrule = 0; |
2272 | /* fall through */ |
2273 | case WAITING_FOR_DECL_OR_RULE: |
2274 | if( x[0]=='%' ){ |
2275 | psp->state = WAITING_FOR_DECL_KEYWORD; |
2276 | }else if( ISLOWER(x[0])((*__ctype_b_loc ())[(int) (((unsigned char)(x[0])))] & ( unsigned short int) _ISlower) ){ |
2277 | psp->lhs = Symbol_new(x); |
2278 | psp->nrhs = 0; |
2279 | psp->lhsalias = 0; |
2280 | psp->state = WAITING_FOR_ARROW; |
2281 | }else if( x[0]=='{' ){ |
2282 | if( psp->prevrule==0 ){ |
2283 | ErrorMsg(psp->filename,psp->tokenlineno, |
2284 | "There is no prior rule upon which to attach the code " |
2285 | "fragment which begins on this line."); |
2286 | psp->errorcnt++; |
2287 | }else if( psp->prevrule->code!=0 ){ |
2288 | ErrorMsg(psp->filename,psp->tokenlineno, |
2289 | "Code fragment beginning on this line is not the first " |
2290 | "to follow the previous rule."); |
2291 | psp->errorcnt++; |
2292 | }else if( strcmp(x, "{NEVER-REDUCE")==0 ){ |
2293 | psp->prevrule->neverReduce = 1; |
2294 | }else{ |
2295 | psp->prevrule->line = psp->tokenlineno; |
2296 | psp->prevrule->code = &x[1]; |
2297 | psp->prevrule->noCode = 0; |
2298 | } |
2299 | }else if( x[0]=='[' ){ |
2300 | psp->state = PRECEDENCE_MARK_1; |
2301 | }else{ |
2302 | ErrorMsg(psp->filename,psp->tokenlineno, |
2303 | "Token \"%s\" should be either \"%%\" or a nonterminal name.", |
2304 | x); |
2305 | psp->errorcnt++; |
2306 | } |
2307 | break; |
2308 | case PRECEDENCE_MARK_1: |
2309 | if( !ISUPPER(x[0])((*__ctype_b_loc ())[(int) (((unsigned char)(x[0])))] & ( unsigned short int) _ISupper) ){ |
2310 | ErrorMsg(psp->filename,psp->tokenlineno, |
2311 | "The precedence symbol must be a terminal."); |
2312 | psp->errorcnt++; |
2313 | }else if( psp->prevrule==0 ){ |
2314 | ErrorMsg(psp->filename,psp->tokenlineno, |
2315 | "There is no prior rule to assign precedence \"[%s]\".",x); |
2316 | psp->errorcnt++; |
2317 | }else if( psp->prevrule->precsym!=0 ){ |
2318 | ErrorMsg(psp->filename,psp->tokenlineno, |
2319 | "Precedence mark on this line is not the first " |
2320 | "to follow the previous rule."); |
2321 | psp->errorcnt++; |
2322 | }else{ |
2323 | psp->prevrule->precsym = Symbol_new(x); |
2324 | } |
2325 | psp->state = PRECEDENCE_MARK_2; |
2326 | break; |
2327 | case PRECEDENCE_MARK_2: |
2328 | if( x[0]!=']' ){ |
2329 | ErrorMsg(psp->filename,psp->tokenlineno, |
2330 | "Missing \"]\" on precedence mark."); |
2331 | psp->errorcnt++; |
2332 | } |
2333 | psp->state = WAITING_FOR_DECL_OR_RULE; |
2334 | break; |
2335 | case WAITING_FOR_ARROW: |
2336 | if( x[0]==':' && x[1]==':' && x[2]=='=' ){ |
2337 | psp->state = IN_RHS; |
2338 | }else if( x[0]=='(' ){ |
2339 | psp->state = LHS_ALIAS_1; |
2340 | }else{ |
2341 | ErrorMsg(psp->filename,psp->tokenlineno, |
2342 | "Expected to see a \":\" following the LHS symbol \"%s\".", |
2343 | psp->lhs->name); |
2344 | psp->errorcnt++; |
2345 | psp->state = RESYNC_AFTER_RULE_ERROR; |
2346 | } |
2347 | break; |
2348 | case LHS_ALIAS_1: |
2349 | if( ISALPHA(x[0])((*__ctype_b_loc ())[(int) (((unsigned char)(x[0])))] & ( unsigned short int) _ISalpha) ){ |
2350 | psp->lhsalias = x; |
2351 | psp->state = LHS_ALIAS_2; |
2352 | }else{ |
2353 | ErrorMsg(psp->filename,psp->tokenlineno, |
2354 | "\"%s\" is not a valid alias for the LHS \"%s\"\n", |
2355 | x,psp->lhs->name); |
2356 | psp->errorcnt++; |
2357 | psp->state = RESYNC_AFTER_RULE_ERROR; |
2358 | } |
2359 | break; |
2360 | case LHS_ALIAS_2: |
2361 | if( x[0]==')' ){ |
2362 | psp->state = LHS_ALIAS_3; |
2363 | }else{ |
2364 | ErrorMsg(psp->filename,psp->tokenlineno, |
2365 | "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); |
2366 | psp->errorcnt++; |
2367 | psp->state = RESYNC_AFTER_RULE_ERROR; |
2368 | } |
2369 | break; |
2370 | case LHS_ALIAS_3: |
2371 | if( x[0]==':' && x[1]==':' && x[2]=='=' ){ |
2372 | psp->state = IN_RHS; |
2373 | }else{ |
2374 | ErrorMsg(psp->filename,psp->tokenlineno, |
2375 | "Missing \"->\" following: \"%s(%s)\".", |
2376 | psp->lhs->name,psp->lhsalias); |
2377 | psp->errorcnt++; |
2378 | psp->state = RESYNC_AFTER_RULE_ERROR; |
2379 | } |
2380 | break; |
2381 | case IN_RHS: |
2382 | if( x[0]=='.' ){ |
2383 | struct rule *rp; |
2384 | rp = (struct rule *)calloc( sizeof(struct rule) + |
2385 | sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1); |
2386 | if( rp==0 ){ |
2387 | ErrorMsg(psp->filename,psp->tokenlineno, |
2388 | "Can't allocate enough memory for this rule."); |
2389 | psp->errorcnt++; |
2390 | psp->prevrule = 0; |
2391 | }else{ |
2392 | int i; |
2393 | rp->ruleline = psp->tokenlineno; |
2394 | rp->rhs = (struct symbol**)&rp[1]; |
2395 | rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]); |
2396 | for(i=0; i<psp->nrhs; i++){ |
2397 | rp->rhs[i] = psp->rhs[i]; |
2398 | rp->rhsalias[i] = psp->alias[i]; |
2399 | if( rp->rhsalias[i]!=0 ){ rp->rhs[i]->bContent = 1; } |
2400 | } |
2401 | rp->lhs = psp->lhs; |
2402 | rp->lhsalias = psp->lhsalias; |
2403 | rp->nrhs = psp->nrhs; |
2404 | rp->code = 0; |
2405 | rp->noCode = 1; |
2406 | rp->precsym = 0; |
2407 | rp->index = psp->gp->nrule++; |
2408 | rp->nextlhs = rp->lhs->rule; |
2409 | rp->lhs->rule = rp; |
2410 | rp->next = 0; |
2411 | if( psp->firstrule==0 ){ |
2412 | psp->firstrule = psp->lastrule = rp; |
2413 | }else{ |
2414 | psp->lastrule->next = rp; |
2415 | psp->lastrule = rp; |
2416 | } |
2417 | psp->prevrule = rp; |
2418 | } |
2419 | psp->state = WAITING_FOR_DECL_OR_RULE; |
2420 | }else if( ISALPHA(x[0])((*__ctype_b_loc ())[(int) (((unsigned char)(x[0])))] & ( unsigned short int) _ISalpha) ){ |
2421 | if( psp->nrhs>=MAXRHS1000 ){ |
2422 | ErrorMsg(psp->filename,psp->tokenlineno, |
2423 | "Too many symbols on RHS of rule beginning at \"%s\".", |
2424 | x); |
2425 | psp->errorcnt++; |
2426 | psp->state = RESYNC_AFTER_RULE_ERROR; |
2427 | }else{ |
2428 | psp->rhs[psp->nrhs] = Symbol_new(x); |
2429 | psp->alias[psp->nrhs] = 0; |
2430 | psp->nrhs++; |
2431 | } |
2432 | }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 && ISUPPER(x[1])((*__ctype_b_loc ())[(int) (((unsigned char)(x[1])))] & ( unsigned short int) _ISupper) ){ |
2433 | struct symbol *msp = psp->rhs[psp->nrhs-1]; |
2434 | if( msp->type!=MULTITERMINAL ){ |
2435 | struct symbol *origsp = msp; |
2436 | msp = (struct symbol *) calloc(1,sizeof(*msp)); |
2437 | memset(msp, 0, sizeof(*msp)); |
2438 | msp->type = MULTITERMINAL; |
2439 | msp->nsubsym = 1; |
2440 | msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*)); |
2441 | msp->subsym[0] = origsp; |
2442 | msp->name = origsp->name; |
2443 | psp->rhs[psp->nrhs-1] = msp; |
2444 | } |
2445 | msp->nsubsym++; |
2446 | msp->subsym = (struct symbol **) realloc(msp->subsym, |
2447 | sizeof(struct symbol*)*msp->nsubsym); |
2448 | msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]); |
2449 | if( ISLOWER(x[1])((*__ctype_b_loc ())[(int) (((unsigned char)(x[1])))] & ( unsigned short int) _ISlower) || ISLOWER(msp->subsym[0]->name[0])((*__ctype_b_loc ())[(int) (((unsigned char)(msp->subsym[0 ]->name[0])))] & (unsigned short int) _ISlower) ){ |
2450 | ErrorMsg(psp->filename,psp->tokenlineno, |
2451 | "Cannot form a compound containing a non-terminal"); |
2452 | psp->errorcnt++; |
2453 | } |
2454 | }else if( x[0]=='(' && psp->nrhs>0 ){ |
2455 | psp->state = RHS_ALIAS_1; |
2456 | }else{ |
2457 | ErrorMsg(psp->filename,psp->tokenlineno, |
2458 | "Illegal character on RHS of rule: \"%s\".",x); |
2459 | psp->errorcnt++; |
2460 | psp->state = RESYNC_AFTER_RULE_ERROR; |
2461 | } |
2462 | break; |
2463 | case RHS_ALIAS_1: |
2464 | if( ISALPHA(x[0])((*__ctype_b_loc ())[(int) (((unsigned char)(x[0])))] & ( unsigned short int) _ISalpha) ){ |
2465 | psp->alias[psp->nrhs-1] = x; |
2466 | psp->state = RHS_ALIAS_2; |
2467 | }else{ |
2468 | ErrorMsg(psp->filename,psp->tokenlineno, |
2469 | "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n", |
2470 | x,psp->rhs[psp->nrhs-1]->name); |
2471 | psp->errorcnt++; |
2472 | psp->state = RESYNC_AFTER_RULE_ERROR; |
2473 | } |
2474 | break; |
2475 | case RHS_ALIAS_2: |
2476 | if( x[0]==')' ){ |
2477 | psp->state = IN_RHS; |
2478 | }else{ |
2479 | ErrorMsg(psp->filename,psp->tokenlineno, |
2480 | "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); |
2481 | psp->errorcnt++; |
2482 | psp->state = RESYNC_AFTER_RULE_ERROR; |
2483 | } |
2484 | break; |
2485 | case WAITING_FOR_DECL_KEYWORD: |
2486 | if( ISALPHA(x[0])((*__ctype_b_loc ())[(int) (((unsigned char)(x[0])))] & ( unsigned short int) _ISalpha) ){ |
2487 | psp->declkeyword = x; |
2488 | psp->declargslot = 0; |
2489 | psp->decllinenoslot = 0; |
2490 | psp->insertLineMacro = 1; |
2491 | psp->state = WAITING_FOR_DECL_ARG; |
2492 | if( strcmp(x,"name")==0 ){ |
2493 | psp->declargslot = &(psp->gp->name); |
2494 | psp->insertLineMacro = 0; |
2495 | }else if( strcmp(x,"include")==0 ){ |
2496 | psp->declargslot = &(psp->gp->include); |
2497 | }else if( strcmp(x,"code")==0 ){ |
2498 | psp->declargslot = &(psp->gp->extracode); |
2499 | }else if( strcmp(x,"token_destructor")==0 ){ |
2500 | psp->declargslot = &psp->gp->tokendest; |
2501 | }else if( strcmp(x,"default_destructor")==0 ){ |
2502 | psp->declargslot = &psp->gp->vardest; |
2503 | }else if( strcmp(x,"token_prefix")==0 ){ |
2504 | psp->declargslot = &psp->gp->tokenprefix; |
2505 | psp->insertLineMacro = 0; |
2506 | }else if( strcmp(x,"syntax_error")==0 ){ |
2507 | psp->declargslot = &(psp->gp->error); |
2508 | }else if( strcmp(x,"parse_accept")==0 ){ |
2509 | psp->declargslot = &(psp->gp->accept); |
2510 | }else if( strcmp(x,"parse_failure")==0 ){ |
2511 | psp->declargslot = &(psp->gp->failure); |
2512 | }else if( strcmp(x,"stack_overflow")==0 ){ |
2513 | psp->declargslot = &(psp->gp->overflow); |
2514 | }else if( strcmp(x,"extra_argument")==0 ){ |
2515 | psp->declargslot = &(psp->gp->arg); |
2516 | psp->insertLineMacro = 0; |
2517 | }else if( strcmp(x,"extra_context")==0 ){ |
2518 | psp->declargslot = &(psp->gp->ctx); |
2519 | psp->insertLineMacro = 0; |
2520 | }else if( strcmp(x,"token_type")==0 ){ |
2521 | psp->declargslot = &(psp->gp->tokentype); |
2522 | psp->insertLineMacro = 0; |
2523 | }else if( strcmp(x,"default_type")==0 ){ |
2524 | psp->declargslot = &(psp->gp->vartype); |
2525 | psp->insertLineMacro = 0; |
2526 | }else if( strcmp(x,"stack_size")==0 ){ |
2527 | psp->declargslot = &(psp->gp->stacksize); |
2528 | psp->insertLineMacro = 0; |
2529 | }else if( strcmp(x,"start_symbol")==0 ){ |
2530 | psp->declargslot = &(psp->gp->start); |
2531 | psp->insertLineMacro = 0; |
2532 | }else if( strcmp(x,"left")==0 ){ |
2533 | psp->preccounter++; |
2534 | psp->declassoc = LEFT; |
2535 | psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
2536 | }else if( strcmp(x,"right")==0 ){ |
2537 | psp->preccounter++; |
2538 | psp->declassoc = RIGHT; |
2539 | psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
2540 | }else if( strcmp(x,"nonassoc")==0 ){ |
2541 | psp->preccounter++; |
2542 | psp->declassoc = NONE; |
2543 | psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
2544 | }else if( strcmp(x,"destructor")==0 ){ |
2545 | psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL; |
2546 | }else if( strcmp(x,"type")==0 ){ |
2547 | psp->state = WAITING_FOR_DATATYPE_SYMBOL; |
2548 | }else if( strcmp(x,"fallback")==0 ){ |
2549 | psp->fallback = 0; |
2550 | psp->state = WAITING_FOR_FALLBACK_ID; |
2551 | }else if( strcmp(x,"token")==0 ){ |
2552 | psp->state = WAITING_FOR_TOKEN_NAME; |
2553 | }else if( strcmp(x,"wildcard")==0 ){ |
2554 | psp->state = WAITING_FOR_WILDCARD_ID; |
2555 | }else if( strcmp(x,"token_class")==0 ){ |
2556 | psp->state = WAITING_FOR_CLASS_ID; |
2557 | }else{ |
2558 | ErrorMsg(psp->filename,psp->tokenlineno, |
2559 | "Unknown declaration keyword: \"%%%s\".",x); |
2560 | psp->errorcnt++; |
2561 | psp->state = RESYNC_AFTER_DECL_ERROR; |
2562 | } |
2563 | }else{ |
2564 | ErrorMsg(psp->filename,psp->tokenlineno, |
2565 | "Illegal declaration keyword: \"%s\".",x); |
2566 | psp->errorcnt++; |
2567 | psp->state = RESYNC_AFTER_DECL_ERROR; |
2568 | } |
2569 | break; |
2570 | case WAITING_FOR_DESTRUCTOR_SYMBOL: |
2571 | if( !ISALPHA(x[0])((*__ctype_b_loc ())[(int) (((unsigned char)(x[0])))] & ( unsigned short int) _ISalpha) ){ |
2572 | ErrorMsg(psp->filename,psp->tokenlineno, |
2573 | "Symbol name missing after %%destructor keyword"); |
2574 | psp->errorcnt++; |
2575 | psp->state = RESYNC_AFTER_DECL_ERROR; |
2576 | }else{ |
2577 | struct symbol *sp = Symbol_new(x); |
2578 | psp->declargslot = &sp->destructor; |
2579 | psp->decllinenoslot = &sp->destLineno; |
2580 | psp->insertLineMacro = 1; |
2581 | psp->state = WAITING_FOR_DECL_ARG; |
2582 | } |
2583 | break; |
2584 | case WAITING_FOR_DATATYPE_SYMBOL: |
2585 | if( !ISALPHA(x[0])((*__ctype_b_loc ())[(int) (((unsigned char)(x[0])))] & ( unsigned short int) _ISalpha) ){ |
2586 | ErrorMsg(psp->filename,psp->tokenlineno, |
2587 | "Symbol name missing after %%type keyword"); |
2588 | psp->errorcnt++; |
2589 | psp->state = RESYNC_AFTER_DECL_ERROR; |
2590 | }else{ |
2591 | struct symbol *sp = Symbol_find(x); |
2592 | if((sp) && (sp->datatype)){ |
2593 | ErrorMsg(psp->filename,psp->tokenlineno, |
2594 | "Symbol %%type \"%s\" already defined", x); |
2595 | psp->errorcnt++; |
2596 | psp->state = RESYNC_AFTER_DECL_ERROR; |
2597 | }else{ |
2598 | if (!sp){ |
2599 | sp = Symbol_new(x); |
2600 | } |
2601 | psp->declargslot = &sp->datatype; |
2602 | psp->insertLineMacro = 0; |
2603 | psp->state = WAITING_FOR_DECL_ARG; |
2604 | } |
2605 | } |
2606 | break; |
2607 | case WAITING_FOR_PRECEDENCE_SYMBOL: |
2608 | if( x[0]=='.' ){ |
2609 | psp->state = WAITING_FOR_DECL_OR_RULE; |
2610 | }else if( ISUPPER(x[0])((*__ctype_b_loc ())[(int) (((unsigned char)(x[0])))] & ( unsigned short int) _ISupper) ){ |
2611 | struct symbol *sp; |
2612 | sp = Symbol_new(x); |
2613 | if( sp->prec>=0 ){ |
2614 | ErrorMsg(psp->filename,psp->tokenlineno, |
2615 | "Symbol \"%s\" has already be given a precedence.",x); |
2616 | psp->errorcnt++; |
2617 | }else{ |
2618 | sp->prec = psp->preccounter; |
2619 | sp->assoc = psp->declassoc; |
2620 | } |
2621 | }else{ |
2622 | ErrorMsg(psp->filename,psp->tokenlineno, |
2623 | "Can't assign a precedence to \"%s\".",x); |
2624 | psp->errorcnt++; |
2625 | } |
2626 | break; |
2627 | case WAITING_FOR_DECL_ARG: |
2628 | if( x[0]=='{' || x[0]=='\"' || ISALNUM(x[0])((*__ctype_b_loc ())[(int) (((unsigned char)(x[0])))] & ( unsigned short int) _ISalnum) ){ |
2629 | const char *zOld, *zNew; |
2630 | char *zBuf, *z; |
2631 | int nOld, n, nLine = 0, nNew, nBack; |
2632 | int addLineMacro; |
2633 | char zLine[50]; |
2634 | zNew = x; |
2635 | if( zNew[0]=='"' || zNew[0]=='{' ) zNew++; |
2636 | nNew = lemonStrlen(zNew)((int)strlen(zNew)); |
2637 | if( *psp->declargslot ){ |
2638 | zOld = *psp->declargslot; |
2639 | }else{ |
2640 | zOld = ""; |
2641 | } |
2642 | nOld = lemonStrlen(zOld)((int)strlen(zOld)); |
2643 | n = nOld + nNew + 20; |
2644 | addLineMacro = !psp->gp->nolinenosflag |
2645 | && psp->insertLineMacro |
2646 | && psp->tokenlineno>1 |
2647 | && (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0); |
2648 | if( addLineMacro ){ |
2649 | for(z=psp->filename, nBack=0; *z; z++){ |
2650 | if( *z=='\\' ) nBack++; |
2651 | } |
2652 | lemon_sprintf(zLine, "#line %d ", psp->tokenlineno); |
2653 | nLine = lemonStrlen(zLine)((int)strlen(zLine)); |
2654 | n += nLine + lemonStrlen(psp->filename)((int)strlen(psp->filename)) + nBack; |
2655 | } |
2656 | *psp->declargslot = (char *) realloc(*psp->declargslot, n); |
2657 | zBuf = *psp->declargslot + nOld; |
2658 | if( addLineMacro ){ |
2659 | if( nOld && zBuf[-1]!='\n' ){ |
2660 | *(zBuf++) = '\n'; |
2661 | } |
2662 | memcpy(zBuf, zLine, nLine); |
2663 | zBuf += nLine; |
2664 | *(zBuf++) = '"'; |
2665 | for(z=psp->filename; *z; z++){ |
2666 | if( *z=='\\' ){ |
2667 | *(zBuf++) = '\\'; |
2668 | } |
2669 | *(zBuf++) = *z; |
2670 | } |
2671 | *(zBuf++) = '"'; |
2672 | *(zBuf++) = '\n'; |
2673 | } |
2674 | if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){ |
2675 | psp->decllinenoslot[0] = psp->tokenlineno; |
2676 | } |
2677 | memcpy(zBuf, zNew, nNew); |
2678 | zBuf += nNew; |
2679 | *zBuf = 0; |
2680 | psp->state = WAITING_FOR_DECL_OR_RULE; |
2681 | }else{ |
2682 | ErrorMsg(psp->filename,psp->tokenlineno, |
2683 | "Illegal argument to %%%s: %s",psp->declkeyword,x); |
2684 | psp->errorcnt++; |
2685 | psp->state = RESYNC_AFTER_DECL_ERROR; |
2686 | } |
2687 | break; |
2688 | case WAITING_FOR_FALLBACK_ID: |
2689 | if( x[0]=='.' ){ |
2690 | psp->state = WAITING_FOR_DECL_OR_RULE; |
2691 | }else if( !ISUPPER(x[0])((*__ctype_b_loc ())[(int) (((unsigned char)(x[0])))] & ( unsigned short int) _ISupper) ){ |
2692 | ErrorMsg(psp->filename, psp->tokenlineno, |
2693 | "%%fallback argument \"%s\" should be a token", x); |
2694 | psp->errorcnt++; |
2695 | }else{ |
2696 | struct symbol *sp = Symbol_new(x); |
2697 | if( psp->fallback==0 ){ |
2698 | psp->fallback = sp; |
2699 | }else if( sp->fallback ){ |
2700 | ErrorMsg(psp->filename, psp->tokenlineno, |
2701 | "More than one fallback assigned to token %s", x); |
2702 | psp->errorcnt++; |
2703 | }else{ |
2704 | sp->fallback = psp->fallback; |
2705 | psp->gp->has_fallback = 1; |
2706 | } |
2707 | } |
2708 | break; |
2709 | case WAITING_FOR_TOKEN_NAME: |
2710 | /* Tokens do not have to be declared before use. But they can be |
2711 | ** in order to control their assigned integer number. The number for |
2712 | ** each token is assigned when it is first seen. So by including |
2713 | ** |
2714 | ** %token ONE TWO THREE. |
2715 | ** |
2716 | ** early in the grammar file, that assigns small consecutive values |
2717 | ** to each of the tokens ONE TWO and THREE. |
2718 | */ |
2719 | if( x[0]=='.' ){ |
2720 | psp->state = WAITING_FOR_DECL_OR_RULE; |
2721 | }else if( !ISUPPER(x[0])((*__ctype_b_loc ())[(int) (((unsigned char)(x[0])))] & ( unsigned short int) _ISupper) ){ |
2722 | ErrorMsg(psp->filename, psp->tokenlineno, |
2723 | "%%token argument \"%s\" should be a token", x); |
2724 | psp->errorcnt++; |
2725 | }else{ |
2726 | (void)Symbol_new(x); |
2727 | } |
2728 | break; |
2729 | case WAITING_FOR_WILDCARD_ID: |
2730 | if( x[0]=='.' ){ |
2731 | psp->state = WAITING_FOR_DECL_OR_RULE; |
2732 | }else if( !ISUPPER(x[0])((*__ctype_b_loc ())[(int) (((unsigned char)(x[0])))] & ( unsigned short int) _ISupper) ){ |
2733 | ErrorMsg(psp->filename, psp->tokenlineno, |
2734 | "%%wildcard argument \"%s\" should be a token", x); |
2735 | psp->errorcnt++; |
2736 | }else{ |
2737 | struct symbol *sp = Symbol_new(x); |
2738 | if( psp->gp->wildcard==0 ){ |
2739 | psp->gp->wildcard = sp; |
2740 | }else{ |
2741 | ErrorMsg(psp->filename, psp->tokenlineno, |
2742 | "Extra wildcard to token: %s", x); |
2743 | psp->errorcnt++; |
2744 | } |
2745 | } |
2746 | break; |
2747 | case WAITING_FOR_CLASS_ID: |
2748 | if( !ISLOWER(x[0])((*__ctype_b_loc ())[(int) (((unsigned char)(x[0])))] & ( unsigned short int) _ISlower) ){ |
2749 | ErrorMsg(psp->filename, psp->tokenlineno, |
2750 | "%%token_class must be followed by an identifier: %s", x); |
2751 | psp->errorcnt++; |
2752 | psp->state = RESYNC_AFTER_DECL_ERROR; |
2753 | }else if( Symbol_find(x) ){ |
2754 | ErrorMsg(psp->filename, psp->tokenlineno, |
2755 | "Symbol \"%s\" already used", x); |
2756 | psp->errorcnt++; |
2757 | psp->state = RESYNC_AFTER_DECL_ERROR; |
2758 | }else{ |
2759 | psp->tkclass = Symbol_new(x); |
2760 | psp->tkclass->type = MULTITERMINAL; |
2761 | psp->state = WAITING_FOR_CLASS_TOKEN; |
2762 | } |
2763 | break; |
2764 | case WAITING_FOR_CLASS_TOKEN: |
2765 | if( x[0]=='.' ){ |
2766 | psp->state = WAITING_FOR_DECL_OR_RULE; |
2767 | }else if( ISUPPER(x[0])((*__ctype_b_loc ())[(int) (((unsigned char)(x[0])))] & ( unsigned short int) _ISupper) || ((x[0]=='|' || x[0]=='/') && ISUPPER(x[1])((*__ctype_b_loc ())[(int) (((unsigned char)(x[1])))] & ( unsigned short int) _ISupper)) ){ |
2768 | struct symbol *msp = psp->tkclass; |
2769 | msp->nsubsym++; |
2770 | msp->subsym = (struct symbol **) realloc(msp->subsym, |
2771 | sizeof(struct symbol*)*msp->nsubsym); |
2772 | if( !ISUPPER(x[0])((*__ctype_b_loc ())[(int) (((unsigned char)(x[0])))] & ( unsigned short int) _ISupper) ) x++; |
2773 | msp->subsym[msp->nsubsym-1] = Symbol_new(x); |
2774 | }else{ |
2775 | ErrorMsg(psp->filename, psp->tokenlineno, |
2776 | "%%token_class argument \"%s\" should be a token", x); |
2777 | psp->errorcnt++; |
2778 | psp->state = RESYNC_AFTER_DECL_ERROR; |
2779 | } |
2780 | break; |
2781 | case RESYNC_AFTER_RULE_ERROR: |
2782 | /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; |
2783 | ** break; */ |
2784 | case RESYNC_AFTER_DECL_ERROR: |
2785 | if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; |
2786 | if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD; |
2787 | break; |
2788 | } |
2789 | } |
2790 | |
2791 | /* The text in the input is part of the argument to an %ifdef or %ifndef. |
2792 | ** Evaluate the text as a boolean expression. Return true or false. |
2793 | */ |
2794 | static int eval_preprocessor_boolean(char *z, int lineno){ |
2795 | int neg = 0; |
2796 | int res = 0; |
2797 | int okTerm = 1; |
2798 | int i; |
2799 | for(i=0; z[i]!=0; i++){ |
2800 | if( ISSPACE(z[i])((*__ctype_b_loc ())[(int) (((unsigned char)(z[i])))] & ( unsigned short int) _ISspace) ) continue; |
2801 | if( z[i]=='!' ){ |
2802 | if( !okTerm ) goto pp_syntax_error; |
2803 | neg = !neg; |
2804 | continue; |
2805 | } |
2806 | if( z[i]=='|' && z[i+1]=='|' ){ |
2807 | if( okTerm ) goto pp_syntax_error; |
2808 | if( res ) return 1; |
2809 | i++; |
2810 | okTerm = 1; |
2811 | continue; |
2812 | } |
2813 | if( z[i]=='&' && z[i+1]=='&' ){ |
2814 | if( okTerm ) goto pp_syntax_error; |
2815 | if( !res ) return 0; |
2816 | i++; |
2817 | okTerm = 1; |
2818 | continue; |
2819 | } |
2820 | if( z[i]=='(' ){ |
2821 | int k; |
2822 | int n = 1; |
2823 | if( !okTerm ) goto pp_syntax_error; |
2824 | for(k=i+1; z[k]; k++){ |
2825 | if( z[k]==')' ){ |
2826 | n--; |
2827 | if( n==0 ){ |
2828 | z[k] = 0; |
2829 | res = eval_preprocessor_boolean(&z[i+1], -1); |
2830 | z[k] = ')'; |
2831 | if( res<0 ){ |
2832 | i = i-res; |
2833 | goto pp_syntax_error; |
2834 | } |
2835 | i = k; |
2836 | break; |
2837 | } |
2838 | }else if( z[k]=='(' ){ |
2839 | n++; |
2840 | }else if( z[k]==0 ){ |
2841 | i = k; |
2842 | goto pp_syntax_error; |
2843 | } |
2844 | } |
2845 | if( neg ){ |
2846 | res = !res; |
2847 | neg = 0; |
2848 | } |
2849 | okTerm = 0; |
2850 | continue; |
2851 | } |
2852 | if( ISALPHA(z[i])((*__ctype_b_loc ())[(int) (((unsigned char)(z[i])))] & ( unsigned short int) _ISalpha) ){ |
2853 | int j, k, n; |
2854 | if( !okTerm ) goto pp_syntax_error; |
2855 | for(k=i+1; ISALNUM(z[k])((*__ctype_b_loc ())[(int) (((unsigned char)(z[k])))] & ( unsigned short int) _ISalnum) || z[k]=='_'; k++){} |
2856 | n = k - i; |
2857 | res = 0; |
2858 | for(j=0; j<nDefine; j++){ |
2859 | if( strncmp(azDefine[j],&z[i],n)==0 && azDefine[j][n]==0 ){ |
2860 | res = 1; |
2861 | break; |
2862 | } |
2863 | } |
2864 | i = k-1; |
2865 | if( neg ){ |
2866 | res = !res; |
2867 | neg = 0; |
2868 | } |
2869 | okTerm = 0; |
2870 | continue; |
2871 | } |
2872 | goto pp_syntax_error; |
2873 | } |
2874 | return res; |
2875 | |
2876 | pp_syntax_error: |
2877 | if( lineno>0 ){ |
2878 | fprintf(stderrstderr, "%%if syntax error on line %d.\n", lineno); |
2879 | fprintf(stderrstderr, " %.*s <-- syntax error here\n", i+1, z); |
2880 | exit(1); |
2881 | }else{ |
2882 | return -(i+1); |
2883 | } |
2884 | } |
2885 | |
2886 | /* Run the preprocessor over the input file text. The global variables |
2887 | ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined |
2888 | ** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and |
2889 | ** comments them out. Text in between is also commented out as appropriate. |
2890 | */ |
2891 | static void preprocess_input(char *z){ |
2892 | int i, j, k; |
2893 | int exclude = 0; |
2894 | int start = 0; |
2895 | int lineno = 1; |
2896 | int start_lineno = 1; |
2897 | for(i=0; z[i]; i++){ |
2898 | if( z[i]=='\n' ) lineno++; |
2899 | if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue; |
2900 | if( strncmp(&z[i],"%endif",6)==0 && ISSPACE(z[i+6])((*__ctype_b_loc ())[(int) (((unsigned char)(z[i+6])))] & (unsigned short int) _ISspace) ){ |
2901 | if( exclude ){ |
2902 | exclude--; |
2903 | if( exclude==0 ){ |
2904 | for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' '; |
2905 | } |
2906 | } |
2907 | for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; |
2908 | }else if( strncmp(&z[i],"%else",5)==0 && ISSPACE(z[i+5])((*__ctype_b_loc ())[(int) (((unsigned char)(z[i+5])))] & (unsigned short int) _ISspace) ){ |
2909 | if( exclude==1){ |
2910 | exclude = 0; |
2911 | for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' '; |
2912 | }else if( exclude==0 ){ |
2913 | exclude = 1; |
2914 | start = i; |
2915 | start_lineno = lineno; |
2916 | } |
2917 | for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; |
2918 | }else if( strncmp(&z[i],"%ifdef ",7)==0 |
2919 | || strncmp(&z[i],"%if ",4)==0 |
2920 | || strncmp(&z[i],"%ifndef ",8)==0 ){ |
2921 | if( exclude ){ |
2922 | exclude++; |
2923 | }else{ |
2924 | int isNot; |
2925 | int iBool; |
2926 | for(j=i; z[j] && !ISSPACE(z[j])((*__ctype_b_loc ())[(int) (((unsigned char)(z[j])))] & ( unsigned short int) _ISspace); j++){} |
2927 | iBool = j; |
2928 | isNot = (j==i+7); |
2929 | while( z[j] && z[j]!='\n' ){ j++; } |
2930 | k = z[j]; |
2931 | z[j] = 0; |
2932 | exclude = eval_preprocessor_boolean(&z[iBool], lineno); |
2933 | z[j] = k; |
2934 | if( !isNot ) exclude = !exclude; |
2935 | if( exclude ){ |
2936 | start = i; |
2937 | start_lineno = lineno; |
2938 | } |
2939 | } |
2940 | for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; |
2941 | } |
2942 | } |
2943 | if( exclude ){ |
2944 | fprintf(stderrstderr,"unterminated %%ifdef starting on line %d\n", start_lineno); |
2945 | exit(1); |
2946 | } |
2947 | } |
2948 | |
2949 | /* In spite of its name, this function is really a scanner. It read |
2950 | ** in the entire input file (all at once) then tokenizes it. Each |
2951 | ** token is passed to the function "parseonetoken" which builds all |
2952 | ** the appropriate data structures in the global state vector "gp". |
2953 | */ |
2954 | void Parse(struct lemon *gp) |
2955 | { |
2956 | struct pstate ps; |
2957 | FILE *fp; |
2958 | char *filebuf; |
2959 | unsigned int filesize; |
2960 | int lineno; |
2961 | int c; |
2962 | char *cp, *nextcp; |
2963 | int startline = 0; |
2964 | |
2965 | memset(&ps, '\0', sizeof(ps)); |
2966 | ps.gp = gp; |
2967 | ps.filename = gp->filename; |
2968 | ps.errorcnt = 0; |
2969 | ps.state = INITIALIZE; |
2970 | |
2971 | /* Begin by reading the input file */ |
2972 | fp = fopen(ps.filename,"rb"); |
2973 | if( fp==0 ){ |
2974 | ErrorMsg(ps.filename,0,"Can't open this file for reading."); |
2975 | gp->errorcnt++; |
2976 | return; |
2977 | } |
2978 | fseek(fp,0,2); |
2979 | filesize = ftell(fp); |
2980 | rewind(fp); |
2981 | filebuf = (char *)malloc( filesize+1 ); |
2982 | if( filesize>100000000 || filebuf==0 ){ |
2983 | ErrorMsg(ps.filename,0,"Input file too large."); |
2984 | free(filebuf); |
2985 | gp->errorcnt++; |
2986 | fclose(fp); |
2987 | return; |
2988 | } |
2989 | if( fread(filebuf,1,filesize,fp)!=filesize ){ |
2990 | ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.", |
2991 | filesize); |
2992 | free(filebuf); |
2993 | gp->errorcnt++; |
2994 | fclose(fp); |
2995 | return; |
2996 | } |
2997 | fclose(fp); |
2998 | filebuf[filesize] = 0; |
2999 | |
3000 | /* Make an initial pass through the file to handle %ifdef and %ifndef */ |
3001 | preprocess_input(filebuf); |
3002 | if( gp->printPreprocessed ){ |
3003 | printf("%s\n", filebuf); |
3004 | return; |
3005 | } |
3006 | |
3007 | /* Now scan the text of the input file */ |
3008 | lineno = 1; |
3009 | for(cp=filebuf; (c= *cp)!=0; ){ |
3010 | if( c=='\n' ) lineno++; /* Keep track of the line number */ |
3011 | if( ISSPACE(c)((*__ctype_b_loc ())[(int) (((unsigned char)(c)))] & (unsigned short int) _ISspace) ){ cp++; continue; } /* Skip all white space */ |
3012 | if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */ |
3013 | cp+=2; |
3014 | while( (c= *cp)!=0 && c!='\n' ) cp++; |
3015 | continue; |
3016 | } |
3017 | if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */ |
3018 | cp+=2; |
3019 | if( (*cp)=='/' ) cp++; |
3020 | while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){ |
3021 | if( c=='\n' ) lineno++; |
3022 | cp++; |
3023 | } |
3024 | if( c ) cp++; |
3025 | continue; |
3026 | } |
3027 | ps.tokenstart = cp; /* Mark the beginning of the token */ |
3028 | ps.tokenlineno = lineno; /* Linenumber on which token begins */ |
3029 | if( c=='\"' ){ /* String literals */ |
3030 | cp++; |
3031 | while( (c= *cp)!=0 && c!='\"' ){ |
3032 | if( c=='\n' ) lineno++; |
3033 | cp++; |
3034 | } |
3035 | if( c==0 ){ |
3036 | ErrorMsg(ps.filename,startline, |
3037 | "String starting on this line is not terminated before " |
3038 | "the end of the file."); |
3039 | ps.errorcnt++; |
3040 | nextcp = cp; |
3041 | }else{ |
3042 | nextcp = cp+1; |
3043 | } |
3044 | }else if( c=='{' ){ /* A block of C code */ |
3045 | int level; |
3046 | cp++; |
3047 | for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){ |
3048 | if( c=='\n' ) lineno++; |
3049 | else if( c=='{' ) level++; |
3050 | else if( c=='}' ) level--; |
3051 | else if( c=='/' && cp[1]=='*' ){ /* Skip comments */ |
3052 | int prevc; |
3053 | cp = &cp[2]; |
3054 | prevc = 0; |
3055 | while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){ |
3056 | if( c=='\n' ) lineno++; |
3057 | prevc = c; |
3058 | cp++; |
3059 | } |
3060 | }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */ |
3061 | cp = &cp[2]; |
3062 | while( (c= *cp)!=0 && c!='\n' ) cp++; |
3063 | if( c ) lineno++; |
3064 | }else if( c=='\'' || c=='\"' ){ /* String a character literals */ |
3065 | int startchar, prevc; |
3066 | startchar = c; |
3067 | prevc = 0; |
3068 | for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){ |
3069 | if( c=='\n' ) lineno++; |
3070 | if( prevc=='\\' ) prevc = 0; |
3071 | else prevc = c; |
3072 | } |
3073 | } |
3074 | } |
3075 | if( c==0 ){ |
3076 | ErrorMsg(ps.filename,ps.tokenlineno, |
3077 | "C code starting on this line is not terminated before " |
3078 | "the end of the file."); |
3079 | ps.errorcnt++; |
3080 | nextcp = cp; |
3081 | }else{ |
3082 | nextcp = cp+1; |
3083 | } |
3084 | }else if( ISALNUM(c)((*__ctype_b_loc ())[(int) (((unsigned char)(c)))] & (unsigned short int) _ISalnum) ){ /* Identifiers */ |
3085 | while( (c= *cp)!=0 && (ISALNUM(c)((*__ctype_b_loc ())[(int) (((unsigned char)(c)))] & (unsigned short int) _ISalnum) || c=='_') ) cp++; |
3086 | nextcp = cp; |
3087 | }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */ |
3088 | cp += 3; |
3089 | nextcp = cp; |
3090 | }else if( (c=='/' || c=='|') && ISALPHA(cp[1])((*__ctype_b_loc ())[(int) (((unsigned char)(cp[1])))] & ( unsigned short int) _ISalpha) ){ |
3091 | cp += 2; |
3092 | while( (c = *cp)!=0 && (ISALNUM(c)((*__ctype_b_loc ())[(int) (((unsigned char)(c)))] & (unsigned short int) _ISalnum) || c=='_') ) cp++; |
3093 | nextcp = cp; |
3094 | }else{ /* All other (one character) operators */ |
3095 | cp++; |
3096 | nextcp = cp; |
3097 | } |
3098 | c = *cp; |
3099 | *cp = 0; /* Null terminate the token */ |
3100 | parseonetoken(&ps); /* Parse the token */ |
3101 | *cp = (char)c; /* Restore the buffer */ |
3102 | cp = nextcp; |
3103 | } |
3104 | free(filebuf); /* Release the buffer after parsing */ |
3105 | gp->rule = ps.firstrule; |
3106 | gp->errorcnt = ps.errorcnt; |
3107 | } |
3108 | /*************************** From the file "plink.c" *********************/ |
3109 | /* |
3110 | ** Routines processing configuration follow-set propagation links |
3111 | ** in the LEMON parser generator. |
3112 | */ |
3113 | static struct plink *plink_freelist = 0; |
3114 | |
3115 | /* Allocate a new plink */ |
3116 | struct plink *Plink_new(void){ |
3117 | struct plink *newlink; |
3118 | |
3119 | if( plink_freelist==0 ){ |
3120 | int i; |
3121 | int amt = 100; |
3122 | plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) ); |
3123 | if( plink_freelist==0 ){ |
3124 | fprintf(stderrstderr, |
3125 | "Unable to allocate memory for a new follow-set propagation link.\n"); |
3126 | exit(1); |
3127 | } |
3128 | for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1]; |
3129 | plink_freelist[amt-1].next = 0; |
3130 | } |
3131 | newlink = plink_freelist; |
3132 | plink_freelist = plink_freelist->next; |
3133 | return newlink; |
3134 | } |
3135 | |
3136 | /* Add a plink to a plink list */ |
3137 | void Plink_add(struct plink **plpp, struct config *cfp) |
3138 | { |
3139 | struct plink *newlink; |
3140 | newlink = Plink_new(); |
3141 | newlink->next = *plpp; |
3142 | *plpp = newlink; |
3143 | newlink->cfp = cfp; |
3144 | } |
3145 | |
3146 | /* Transfer every plink on the list "from" to the list "to" */ |
3147 | void Plink_copy(struct plink **to, struct plink *from) |
3148 | { |
3149 | struct plink *nextpl; |
3150 | while( from ){ |
3151 | nextpl = from->next; |
3152 | from->next = *to; |
3153 | *to = from; |
3154 | from = nextpl; |
3155 | } |
3156 | } |
3157 | |
3158 | /* Delete every plink on the list */ |
3159 | void Plink_delete(struct plink *plp) |
3160 | { |
3161 | struct plink *nextpl; |
3162 | |
3163 | while( plp ){ |
3164 | nextpl = plp->next; |
3165 | plp->next = plink_freelist; |
3166 | plink_freelist = plp; |
3167 | plp = nextpl; |
3168 | } |
3169 | } |
3170 | /*********************** From the file "report.c" **************************/ |
3171 | /* |
3172 | ** Procedures for generating reports and tables in the LEMON parser generator. |
3173 | */ |
3174 | |
3175 | /* Generate a filename with the given suffix. Space to hold the |
3176 | ** name comes from malloc() and must be freed by the calling |
3177 | ** function. |
3178 | */ |
3179 | PRIVATE char *file_makename(struct lemon *lemp, const char *suffix) |
3180 | { |
3181 | char *name; |
3182 | char *cp; |
3183 | char *filename = lemp->filename; |
3184 | int sz; |
3185 | |
3186 | if( outputDir ){ |
3187 | cp = strrchr(filename, '/'); |
3188 | if( cp ) filename = cp + 1; |
3189 | } |
3190 | sz = lemonStrlen(filename)((int)strlen(filename)); |
3191 | sz += lemonStrlen(suffix)((int)strlen(suffix)); |
3192 | if( outputDir ) sz += lemonStrlen(outputDir)((int)strlen(outputDir)) + 1; |
3193 | sz += 5; |
3194 | name = (char*)malloc( sz ); |
3195 | if( name==0 ){ |
3196 | fprintf(stderrstderr,"Can't allocate space for a filename.\n"); |
3197 | exit(1); |
3198 | } |
3199 | name[0] = 0; |
3200 | if( outputDir ){ |
3201 | lemon_strcpy(name, outputDir); |
3202 | lemon_strcat(name, "/"); |
3203 | } |
3204 | lemon_strcat(name,filename); |
3205 | cp = strrchr(name,'.'); |
3206 | if( cp ) *cp = 0; |
3207 | lemon_strcat(name,suffix); |
3208 | return name; |
3209 | } |
3210 | |
3211 | /* Open a file with a name based on the name of the input file, |
3212 | ** but with a different (specified) suffix, and return a pointer |
3213 | ** to the stream */ |
3214 | PRIVATE FILE *file_open( |
3215 | struct lemon *lemp, |
3216 | const char *suffix, |
3217 | const char *mode |
3218 | ){ |
3219 | FILE *fp; |
3220 | |
3221 | if( lemp->outname ) free(lemp->outname); |
3222 | lemp->outname = file_makename(lemp, suffix); |
3223 | fp = fopen(lemp->outname,mode); |
3224 | if( fp==0 && *mode=='w' ){ |
3225 | fprintf(stderrstderr,"Can't open file \"%s\".\n",lemp->outname); |
3226 | lemp->errorcnt++; |
3227 | return 0; |
3228 | } |
3229 | return fp; |
3230 | } |
3231 | |
3232 | /* Print the text of a rule |
3233 | */ |
3234 | void rule_print(FILE *out, struct rule *rp){ |
3235 | int i, j; |
3236 | fprintf(out, "%s",rp->lhs->name); |
3237 | /* if( rp->lhsalias ) fprintf(out,"(%s)",rp->lhsalias); */ |
3238 | fprintf(out," ::="); |
3239 | for(i=0; i<rp->nrhs; i++){ |
3240 | struct symbol *sp = rp->rhs[i]; |
3241 | if( sp->type==MULTITERMINAL ){ |
3242 | fprintf(out," %s", sp->subsym[0]->name); |
3243 | for(j=1; j<sp->nsubsym; j++){ |
3244 | fprintf(out,"|%s", sp->subsym[j]->name); |
3245 | } |
3246 | }else{ |
3247 | fprintf(out," %s", sp->name); |
3248 | } |
3249 | /* if( rp->rhsalias[i] ) fprintf(out,"(%s)",rp->rhsalias[i]); */ |
3250 | } |
3251 | } |
3252 | |
3253 | /* Duplicate the input file without comments and without actions |
3254 | ** on rules */ |
3255 | void Reprint(struct lemon *lemp) |
3256 | { |
3257 | struct rule *rp; |
3258 | struct symbol *sp; |
3259 | int i, j, maxlen, len, ncolumns, skip; |
3260 | printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename); |
3261 | maxlen = 10; |
3262 | for(i=0; i<lemp->nsymbol; i++){ |
3263 | sp = lemp->symbols[i]; |
3264 | len = lemonStrlen(sp->name)((int)strlen(sp->name)); |
3265 | if( len>maxlen ) maxlen = len; |
3266 | } |
3267 | ncolumns = 76/(maxlen+5); |
3268 | if( ncolumns<1 ) ncolumns = 1; |
3269 | skip = (lemp->nsymbol + ncolumns - 1)/ncolumns; |
3270 | for(i=0; i<skip; i++){ |
3271 | printf("//"); |
3272 | for(j=i; j<lemp->nsymbol; j+=skip){ |
3273 | sp = lemp->symbols[j]; |
3274 | assert( sp->index==j )((void) sizeof ((sp->index==j) ? 1 : 0), __extension__ ({ if (sp->index==j) ; else __assert_fail ("sp->index==j", "tools/lemon/lemon.c" , 3274, __extension__ __PRETTY_FUNCTION__); })); |
3275 | printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name); |
3276 | } |
3277 | printf("\n"); |
3278 | } |
3279 | for(rp=lemp->rule; rp; rp=rp->next){ |
3280 | rule_print(stdoutstdout, rp); |
3281 | printf("."); |
3282 | if( rp->precsym ) printf(" [%s]",rp->precsym->name); |
3283 | /* if( rp->code ) printf("\n %s",rp->code); */ |
3284 | printf("\n"); |
3285 | } |
3286 | } |
3287 | |
3288 | /* Print a single rule. |
3289 | */ |
3290 | void RulePrint(FILE *fp, struct rule *rp, int iCursor){ |
3291 | struct symbol *sp; |
3292 | int i, j; |
3293 | fprintf(fp,"%s ::=",rp->lhs->name); |
3294 | for(i=0; i<=rp->nrhs; i++){ |
3295 | if( i==iCursor ) fprintf(fp," *"); |
3296 | if( i==rp->nrhs ) break; |
3297 | sp = rp->rhs[i]; |
3298 | if( sp->type==MULTITERMINAL ){ |
3299 | fprintf(fp," %s", sp->subsym[0]->name); |
3300 | for(j=1; j<sp->nsubsym; j++){ |
3301 | fprintf(fp,"|%s",sp->subsym[j]->name); |
3302 | } |
3303 | }else{ |
3304 | fprintf(fp," %s", sp->name); |
3305 | } |
3306 | } |
3307 | } |
3308 | |
3309 | /* Print the rule for a configuration. |
3310 | */ |
3311 | void ConfigPrint(FILE *fp, struct config *cfp){ |
3312 | RulePrint(fp, cfp->rp, cfp->dot); |
3313 | } |
3314 | |
3315 | /* #define TEST */ |
3316 | #if 0 |
3317 | /* Print a set */ |
3318 | PRIVATE void SetPrint(out,set,lemp) |
3319 | FILE *out; |
3320 | char *set; |
3321 | struct lemon *lemp; |
3322 | { |
3323 | int i; |
3324 | char *spacer; |
3325 | spacer = ""; |
3326 | fprintf(out,"%12s[",""); |
3327 | for(i=0; i<lemp->nterminal; i++){ |
3328 | if( SetFind(set,i)(set[i]) ){ |
3329 | fprintf(out,"%s%s",spacer,lemp->symbols[i]->name); |
3330 | spacer = " "; |
3331 | } |
3332 | } |
3333 | fprintf(out,"]\n"); |
3334 | } |
3335 | |
3336 | /* Print a plink chain */ |
3337 | PRIVATE void PlinkPrint(out,plp,tag) |
3338 | FILE *out; |
3339 | struct plink *plp; |
3340 | char *tag; |
3341 | { |
3342 | while( plp ){ |
3343 | fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum); |
3344 | ConfigPrint(out,plp->cfp); |
3345 | fprintf(out,"\n"); |
3346 | plp = plp->next; |
3347 | } |
3348 | } |
3349 | #endif |
3350 | |
3351 | /* Print an action to the given file descriptor. Return FALSE if |
3352 | ** nothing was actually printed. |
3353 | */ |
3354 | int PrintAction( |
3355 | struct action *ap, /* The action to print */ |
3356 | FILE *fp, /* Print the action here */ |
3357 | int indent /* Indent by this amount */ |
3358 | ){ |
3359 | int result = 1; |
3360 | switch( ap->type ){ |
3361 | case SHIFT: { |
3362 | struct state *stp = ap->x.stp; |
3363 | fprintf(fp,"%*s shift %-7d",indent,ap->sp->name,stp->statenum); |
3364 | break; |
3365 | } |
3366 | case REDUCE: { |
3367 | struct rule *rp = ap->x.rp; |
3368 | fprintf(fp,"%*s reduce %-7d",indent,ap->sp->name,rp->iRule); |
3369 | RulePrint(fp, rp, -1); |
3370 | break; |
3371 | } |
3372 | case SHIFTREDUCE: { |
3373 | struct rule *rp = ap->x.rp; |
3374 | fprintf(fp,"%*s shift-reduce %-7d",indent,ap->sp->name,rp->iRule); |
3375 | RulePrint(fp, rp, -1); |
3376 | break; |
3377 | } |
3378 | case ACCEPT: |
3379 | fprintf(fp,"%*s accept",indent,ap->sp->name); |
3380 | break; |
3381 | case ERROR: |
3382 | fprintf(fp,"%*s error",indent,ap->sp->name); |
3383 | break; |
3384 | case SRCONFLICT: |
3385 | case RRCONFLICT: |
3386 | fprintf(fp,"%*s reduce %-7d ** Parsing conflict **", |
3387 | indent,ap->sp->name,ap->x.rp->iRule); |
3388 | break; |
3389 | case SSCONFLICT: |
3390 | fprintf(fp,"%*s shift %-7d ** Parsing conflict **", |
3391 | indent,ap->sp->name,ap->x.stp->statenum); |
3392 | break; |
3393 | case SH_RESOLVED: |
3394 | if( showPrecedenceConflict ){ |
3395 | fprintf(fp,"%*s shift %-7d -- dropped by precedence", |
3396 | indent,ap->sp->name,ap->x.stp->statenum); |
3397 | }else{ |
3398 | result = 0; |
3399 | } |
3400 | break; |
3401 | case RD_RESOLVED: |
3402 | if( showPrecedenceConflict ){ |
3403 | fprintf(fp,"%*s reduce %-7d -- dropped by precedence", |
3404 | indent,ap->sp->name,ap->x.rp->iRule); |
3405 | }else{ |
3406 | result = 0; |
3407 | } |
3408 | break; |
3409 | case NOT_USED: |
3410 | result = 0; |
3411 | break; |
3412 | } |
3413 | if( result && ap->spOpt ){ |
3414 | fprintf(fp," /* because %s==%s */", ap->sp->name, ap->spOpt->name); |
3415 | } |
3416 | return result; |
3417 | } |
3418 | |
3419 | /* Generate the "*.out" log file */ |
3420 | void ReportOutput(struct lemon *lemp) |
3421 | { |
3422 | int i, n; |
3423 | struct state *stp; |
3424 | struct config *cfp; |
3425 | struct action *ap; |
3426 | struct rule *rp; |
3427 | FILE *fp; |
3428 | |
3429 | fp = file_open(lemp,".out","wb"); |
3430 | if( fp==0 ) return; |
3431 | for(i=0; i<lemp->nxstate; i++){ |
3432 | stp = lemp->sorted[i]; |
3433 | fprintf(fp,"State %d:\n",stp->statenum); |
3434 | if( lemp->basisflag ) cfp=stp->bp; |
3435 | else cfp=stp->cfp; |
3436 | while( cfp ){ |
3437 | char buf[20]; |
3438 | if( cfp->dot==cfp->rp->nrhs ){ |
3439 | lemon_sprintf(buf,"(%d)",cfp->rp->iRule); |
3440 | fprintf(fp," %5s ",buf); |
3441 | }else{ |
3442 | fprintf(fp," "); |
3443 | } |
3444 | ConfigPrint(fp,cfp); |
3445 | fprintf(fp,"\n"); |
3446 | #if 0 |
3447 | SetPrint(fp,cfp->fws,lemp); |
3448 | PlinkPrint(fp,cfp->fplp,"To "); |
3449 | PlinkPrint(fp,cfp->bplp,"From"); |
3450 | #endif |
3451 | if( lemp->basisflag ) cfp=cfp->bp; |
3452 | else cfp=cfp->next; |
3453 | } |
3454 | fprintf(fp,"\n"); |
3455 | for(ap=stp->ap; ap; ap=ap->next){ |
3456 | if( PrintAction(ap,fp,30) ) fprintf(fp,"\n"); |
3457 | } |
3458 | fprintf(fp,"\n"); |
3459 | } |
3460 | fprintf(fp, "----------------------------------------------------\n"); |
3461 | fprintf(fp, "Symbols:\n"); |
3462 | fprintf(fp, "The first-set of non-terminals is shown after the name.\n\n"); |
3463 | for(i=0; i<lemp->nsymbol; i++){ |
3464 | int j; |
3465 | struct symbol *sp; |
3466 | |
3467 | sp = lemp->symbols[i]; |
3468 | fprintf(fp, " %3d: %s", i, sp->name); |
3469 | if( sp->type==NONTERMINAL ){ |
3470 | fprintf(fp, ":"); |
3471 | if( sp->lambda ){ |
3472 | fprintf(fp, " <lambda>"); |
3473 | } |
3474 | for(j=0; j<lemp->nterminal; j++){ |
3475 | if( sp->firstset && SetFind(sp->firstset, j)(sp->firstset[j]) ){ |
3476 | fprintf(fp, " %s", lemp->symbols[j]->name); |
3477 | } |
3478 | } |
3479 | } |
3480 | if( sp->prec>=0 ) fprintf(fp," (precedence=%d)", sp->prec); |
3481 | fprintf(fp, "\n"); |
3482 | } |
3483 | fprintf(fp, "----------------------------------------------------\n"); |
3484 | fprintf(fp, "Syntax-only Symbols:\n"); |
3485 | fprintf(fp, "The following symbols never carry semantic content.\n\n"); |
3486 | for(i=n=0; i<lemp->nsymbol; i++){ |
3487 | int w; |
3488 | struct symbol *sp = lemp->symbols[i]; |
3489 | if( sp->bContent ) continue; |
3490 | w = (int)strlen(sp->name); |
3491 | if( n>0 && n+w>75 ){ |
3492 | fprintf(fp,"\n"); |
3493 | n = 0; |
3494 | } |
3495 | if( n>0 ){ |
3496 | fprintf(fp, " "); |
3497 | n++; |
3498 | } |
3499 | fprintf(fp, "%s", sp->name); |
3500 | n += w; |
3501 | } |
3502 | if( n>0 ) fprintf(fp, "\n"); |
3503 | fprintf(fp, "----------------------------------------------------\n"); |
3504 | fprintf(fp, "Rules:\n"); |
3505 | for(rp=lemp->rule; rp; rp=rp->next){ |
3506 | fprintf(fp, "%4d: ", rp->iRule); |
3507 | rule_print(fp, rp); |
3508 | fprintf(fp,"."); |
3509 | if( rp->precsym ){ |
3510 | fprintf(fp," [%s precedence=%d]", |
3511 | rp->precsym->name, rp->precsym->prec); |
3512 | } |
3513 | fprintf(fp,"\n"); |
3514 | } |
3515 | fclose(fp); |
3516 | return; |
3517 | } |
3518 | |
3519 | /* Search for the file "name" which is in the same directory as |
3520 | ** the executable */ |
3521 | PRIVATE char *pathsearch(char *argv0, char *name, int modemask) |
3522 | { |
3523 | const char *pathlist; |
3524 | char *pathbufptr = 0; |
3525 | char *pathbuf = 0; |
3526 | char *path,*cp; |
3527 | char c; |
3528 | |
3529 | #ifdef __WIN32__ |
3530 | cp = strrchr(argv0,'\\'); |
3531 | #else |
3532 | cp = strrchr(argv0,'/'); |
3533 | #endif |
3534 | if( cp ){ |
3535 | c = *cp; |
3536 | *cp = 0; |
3537 | path = (char *)malloc( lemonStrlen(argv0)((int)strlen(argv0)) + lemonStrlen(name)((int)strlen(name)) + 2 ); |
3538 | if( path ) lemon_sprintf(path,"%s/%s",argv0,name); |
3539 | *cp = c; |
3540 | }else{ |
3541 | pathlist = getenv("PATH"); |
3542 | if( pathlist==0 ) pathlist = ".:/bin:/usr/bin"; |
3543 | pathbuf = (char *) malloc( lemonStrlen(pathlist)((int)strlen(pathlist)) + 1 ); |
3544 | path = (char *)malloc( lemonStrlen(pathlist)((int)strlen(pathlist))+lemonStrlen(name)((int)strlen(name))+2 ); |
3545 | if( (pathbuf != 0) && (path!=0) ){ |
3546 | pathbufptr = pathbuf; |
3547 | lemon_strcpy(pathbuf, pathlist); |
3548 | while( *pathbuf ){ |
3549 | cp = strchr(pathbuf,':'); |
3550 | if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)((int)strlen(pathbuf))]; |
3551 | c = *cp; |
3552 | *cp = 0; |
3553 | lemon_sprintf(path,"%s/%s",pathbuf,name); |
3554 | *cp = c; |
3555 | if( c==0 ) pathbuf[0] = 0; |
3556 | else pathbuf = &cp[1]; |
3557 | if( access(path,modemask)==0 ) break; |
3558 | } |
3559 | } |
3560 | free(pathbufptr); |
3561 | } |
3562 | return path; |
3563 | } |
3564 | |
3565 | /* Given an action, compute the integer value for that action |
3566 | ** which is to be put in the action table of the generated machine. |
3567 | ** Return negative if no action should be generated. |
3568 | */ |
3569 | PRIVATE int compute_action(struct lemon *lemp, struct action *ap) |
3570 | { |
3571 | int act; |
3572 | switch( ap->type ){ |
3573 | case SHIFT: act = ap->x.stp->statenum; break; |
3574 | case SHIFTREDUCE: { |
3575 | /* Since a SHIFT is inherient after a prior REDUCE, convert any |
3576 | ** SHIFTREDUCE action with a nonterminal on the LHS into a simple |
3577 | ** REDUCE action: */ |
3578 | if( ap->sp->index>=lemp->nterminal |
3579 | && (lemp->errsym==0 || ap->sp->index!=lemp->errsym->index) |
3580 | ){ |
3581 | act = lemp->minReduce + ap->x.rp->iRule; |
3582 | }else{ |
3583 | act = lemp->minShiftReduce + ap->x.rp->iRule; |
3584 | } |
3585 | break; |
3586 | } |
3587 | case REDUCE: act = lemp->minReduce + ap->x.rp->iRule; break; |
3588 | case ERROR: act = lemp->errAction; break; |
3589 | case ACCEPT: act = lemp->accAction; break; |
3590 | default: act = -1; break; |
3591 | } |
3592 | return act; |
3593 | } |
3594 | |
3595 | #define LINESIZE1000 1000 |
3596 | /* The next cluster of routines are for reading the template file |
3597 | ** and writing the results to the generated parser */ |
3598 | /* The first function transfers data from "in" to "out" until |
3599 | ** a line is seen which begins with "%%". The line number is |
3600 | ** tracked. |
3601 | ** |
3602 | ** if name!=0, then any word that begin with "Parse" is changed to |
3603 | ** begin with *name instead. |
3604 | */ |
3605 | PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno) |
3606 | { |
3607 | int i, iStart; |
3608 | char line[LINESIZE1000]; |
3609 | while( fgets(line,LINESIZE1000,in) && (line[0]!='%' || line[1]!='%') ){ |
3610 | (*lineno)++; |
3611 | iStart = 0; |
3612 | if( name ){ |
3613 | for(i=0; line[i]; i++){ |
3614 | if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0 |
3615 | && (i==0 || !ISALPHA(line[i-1])((*__ctype_b_loc ())[(int) (((unsigned char)(line[i-1])))] & (unsigned short int) _ISalpha)) |
3616 | ){ |
3617 | if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]); |
3618 | fprintf(out,"%s",name); |
3619 | i += 4; |
3620 | iStart = i+1; |
3621 | } |
3622 | } |
3623 | } |
3624 | fprintf(out,"%s",&line[iStart]); |
3625 | } |
3626 | } |
3627 | |
3628 | /* Skip forward past the header of the template file to the first "%%" |
3629 | */ |
3630 | PRIVATE void tplt_skip_header(FILE *in, int *lineno) |
3631 | { |
3632 | char line[LINESIZE1000]; |
3633 | while( fgets(line,LINESIZE1000,in) && (line[0]!='%' || line[1]!='%') ){ |
3634 | (*lineno)++; |
3635 | } |
3636 | } |
3637 | |
3638 | /* The next function finds the template file and opens it, returning |
3639 | ** a pointer to the opened file. */ |
3640 | PRIVATE FILE *tplt_open(struct lemon *lemp) |
3641 | { |
3642 | static char templatename[] = "lempar.c"; |
3643 | char buf[1000]; |
3644 | FILE *in; |
3645 | char *tpltname; |
3646 | char *toFree = 0; |
3647 | char *cp; |
3648 | |
3649 | /* first, see if user specified a template filename on the command line. */ |
3650 | if (user_templatename != 0) { |
3651 | if( access(user_templatename,004)==-1 ){ |
3652 | fprintf(stderrstderr,"Can't find the parser driver template file \"%s\".\n", |
3653 | user_templatename); |
3654 | lemp->errorcnt++; |
3655 | return 0; |
3656 | } |
3657 | in = fopen(user_templatename,"rb"); |
3658 | if( in==0 ){ |
3659 | fprintf(stderrstderr,"Can't open the template file \"%s\".\n", |
3660 | user_templatename); |
3661 | lemp->errorcnt++; |
3662 | return 0; |
3663 | } |
3664 | return in; |
3665 | } |
3666 | |
3667 | cp = strrchr(lemp->filename,'.'); |
3668 | if( cp ){ |
3669 | lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename); |
3670 | }else{ |
3671 | lemon_sprintf(buf,"%s.lt",lemp->filename); |
3672 | } |
3673 | if( access(buf,004)==0 ){ |
3674 | tpltname = buf; |
3675 | }else if( access(templatename,004)==0 ){ |
3676 | tpltname = templatename; |
3677 | }else{ |
3678 | toFree = tpltname = pathsearch(lemp->argv0,templatename,0); |
3679 | } |
3680 | if( tpltname==0 ){ |
3681 | fprintf(stderrstderr,"Can't find the parser driver template file \"%s\".\n", |
3682 | templatename); |
3683 | lemp->errorcnt++; |
3684 | return 0; |
3685 | } |
3686 | in = fopen(tpltname,"rb"); |
3687 | if( in==0 ){ |
3688 | fprintf(stderrstderr,"Can't open the template file \"%s\".\n",tpltname); |
3689 | lemp->errorcnt++; |
3690 | } |
3691 | free(toFree); |
3692 | return in; |
3693 | } |
3694 | |
3695 | /* Print a #line directive line to the output file. */ |
3696 | PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename) |
3697 | { |
3698 | fprintf(out,"#line %d \"",lineno); |
3699 | while( *filename ){ |
3700 | if( *filename == '\\' ) putc('\\',out); |
3701 | putc(*filename,out); |
3702 | filename++; |
3703 | } |
3704 | fprintf(out,"\"\n"); |
3705 | } |
3706 | |
3707 | /* Print a string to the file and keep the linenumber up to date */ |
3708 | PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno) |
3709 | { |
3710 | if( str==0 ) return; |
3711 | while( *str ){ |
3712 | putc(*str,out); |
3713 | if( *str=='\n' ) (*lineno)++; |
3714 | str++; |
3715 | } |
3716 | if( str[-1]!='\n' ){ |
3717 | putc('\n',out); |
3718 | (*lineno)++; |
3719 | } |
3720 | if (!lemp->nolinenosflag) { |
3721 | (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); |
3722 | } |
3723 | return; |
3724 | } |
3725 | |
3726 | /* |
3727 | ** The following routine emits code for the destructor for the |
3728 | ** symbol sp |
3729 | */ |
3730 | void emit_destructor_code( |
3731 | FILE *out, |
3732 | struct symbol *sp, |
3733 | struct lemon *lemp, |
3734 | int *lineno |
3735 | ){ |
3736 | char *cp = 0; |
3737 | |
3738 | if( sp->type==TERMINAL ){ |
3739 | cp = lemp->tokendest; |
3740 | if( cp==0 ) return; |
3741 | fprintf(out,"{\n"); (*lineno)++; |
3742 | }else if( sp->destructor ){ |
3743 | cp = sp->destructor; |
3744 | fprintf(out,"{\n"); (*lineno)++; |
3745 | if( !lemp->nolinenosflag ){ |
3746 | (*lineno)++; |
3747 | tplt_linedir(out,sp->destLineno,lemp->filename); |
3748 | } |
3749 | }else if( lemp->vardest ){ |
3750 | cp = lemp->vardest; |
3751 | if( cp==0 ) return; |
3752 | fprintf(out,"{\n"); (*lineno)++; |
3753 | }else{ |
3754 | assert( 0 )((void) sizeof ((0) ? 1 : 0), __extension__ ({ if (0) ; else __assert_fail ("0", "tools/lemon/lemon.c", 3754, __extension__ __PRETTY_FUNCTION__ ); })); /* Cannot happen */ |
3755 | } |
3756 | for(; *cp; cp++){ |
3757 | if( *cp=='$' && cp[1]=='$' ){ |
3758 | fprintf(out,"(yypminor->yy%d)",sp->dtnum); |
3759 | cp++; |
3760 | continue; |
3761 | } |
3762 | if( *cp=='\n' ) (*lineno)++; |
3763 | fputc(*cp,out); |
3764 | } |
3765 | fprintf(out,"\n"); (*lineno)++; |
3766 | if (!lemp->nolinenosflag) { |
3767 | (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); |
3768 | } |
3769 | fprintf(out,"}\n"); (*lineno)++; |
3770 | return; |
3771 | } |
3772 | |
3773 | /* |
3774 | ** Return TRUE (non-zero) if the given symbol has a destructor. |
3775 | */ |
3776 | int has_destructor(struct symbol *sp, struct lemon *lemp) |
3777 | { |
3778 | int ret; |
3779 | if( sp->type==TERMINAL ){ |
3780 | ret = lemp->tokendest!=0; |
3781 | }else{ |
3782 | ret = lemp->vardest!=0 || sp->destructor!=0; |
3783 | } |
3784 | return ret; |
3785 | } |
3786 | |
3787 | /* |
3788 | ** Append text to a dynamically allocated string. If zText is 0 then |
3789 | ** reset the string to be empty again. Always return the complete text |
3790 | ** of the string (which is overwritten with each call). |
3791 | ** |
3792 | ** n bytes of zText are stored. If n==0 then all of zText up to the first |
3793 | ** \000 terminator is stored. zText can contain up to two instances of |
3794 | ** %d. The values of p1 and p2 are written into the first and second |
3795 | ** %d. |
3796 | ** |
3797 | ** If n==-1, then the previous character is overwritten. |
3798 | */ |
3799 | PRIVATE char *append_str(const char *zText, int n, int p1, int p2){ |
3800 | static char empty[1] = { 0 }; |
3801 | static char *z = 0; |
3802 | static int alloced = 0; |
3803 | static int used = 0; |
3804 | int c; |
3805 | char zInt[40]; |
3806 | if( zText==0 ){ |
3807 | if( used==0 && z!=0 ) z[0] = 0; |
3808 | used = 0; |
3809 | return z; |
3810 | } |
3811 | if( n<=0 ){ |
3812 | if( n<0 ){ |
3813 | used += n; |
3814 | assert( used>=0 )((void) sizeof ((used>=0) ? 1 : 0), __extension__ ({ if (used >=0) ; else __assert_fail ("used>=0", "tools/lemon/lemon.c" , 3814, __extension__ __PRETTY_FUNCTION__); })); |
3815 | } |
3816 | n = lemonStrlen(zText)((int)strlen(zText)); |
3817 | } |
3818 | if( (int) (n+sizeof(zInt)*2+used) >= alloced ){ |
3819 | alloced = n + sizeof(zInt)*2 + used + 200; |
3820 | z = (char *) realloc(z, alloced); |
3821 | } |
3822 | if( z==0 ) return empty; |
3823 | while( n-- > 0 ){ |
3824 | c = *(zText++); |
3825 | if( c=='%' && n>0 && zText[0]=='d' ){ |
3826 | lemon_sprintf(zInt, "%d", p1); |
3827 | p1 = p2; |
3828 | lemon_strcpy(&z[used], zInt); |
3829 | used += lemonStrlen(&z[used])((int)strlen(&z[used])); |
3830 | zText++; |
3831 | n--; |
3832 | }else{ |
3833 | z[used++] = (char)c; |
3834 | } |
3835 | } |
3836 | z[used] = 0; |
3837 | return z; |
3838 | } |
3839 | |
3840 | /* |
3841 | ** Write and transform the rp->code string so that symbols are expanded. |
3842 | ** Populate the rp->codePrefix and rp->codeSuffix strings, as appropriate. |
3843 | ** |
3844 | ** Return 1 if the expanded code requires that "yylhsminor" local variable |
3845 | ** to be defined. |
3846 | */ |
3847 | PRIVATE int translate_code(struct lemon *lemp, struct rule *rp){ |
3848 | char *cp, *xp; |
3849 | int i; |
3850 | int rc = 0; /* True if yylhsminor is used */ |
3851 | int dontUseRhs0 = 0; /* If true, use of left-most RHS label is illegal */ |
3852 | const char *zSkip = 0; /* The zOvwrt comment within rp->code, or NULL */ |
3853 | char lhsused = 0; /* True if the LHS element has been used */ |
3854 | char lhsdirect; /* True if LHS writes directly into stack */ |
3855 | char used[MAXRHS1000]; /* True for each RHS element which is used */ |
3856 | char zLhs[50]; /* Convert the LHS symbol into this string */ |
3857 | char zOvwrt[900]; /* Comment that to allow LHS to overwrite RHS */ |
3858 | |
3859 | for(i=0; i<rp->nrhs; i++) used[i] = 0; |
3860 | lhsused = 0; |
3861 | |
3862 | if( rp->code==0 ){ |
3863 | static char newlinestr[2] = { '\n', '\0' }; |
3864 | rp->code = newlinestr; |
3865 | rp->line = rp->ruleline; |
3866 | rp->noCode = 1; |
3867 | }else{ |
3868 | rp->noCode = 0; |
3869 | } |
3870 | |
3871 | |
3872 | if( rp->nrhs==0 ){ |
3873 | /* If there are no RHS symbols, then writing directly to the LHS is ok */ |
3874 | lhsdirect = 1; |
3875 | }else if( rp->rhsalias[0]==0 ){ |
3876 | /* The left-most RHS symbol has no value. LHS direct is ok. But |
3877 | ** we have to call the destructor on the RHS symbol first. */ |
3878 | lhsdirect = 1; |
3879 | if( has_destructor(rp->rhs[0],lemp) ){ |
3880 | append_str(0,0,0,0); |
3881 | append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0, |
3882 | rp->rhs[0]->index,1-rp->nrhs); |
3883 | rp->codePrefix = Strsafe(append_str(0,0,0,0)); |
3884 | rp->noCode = 0; |
3885 | } |
3886 | }else if( rp->lhsalias==0 ){ |
3887 | /* There is no LHS value symbol. */ |
3888 | lhsdirect = 1; |
3889 | }else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){ |
3890 | /* The LHS symbol and the left-most RHS symbol are the same, so |
3891 | ** direct writing is allowed */ |
3892 | lhsdirect = 1; |
3893 | lhsused = 1; |
3894 | used[0] = 1; |
3895 | if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){ |
3896 | ErrorMsg(lemp->filename,rp->ruleline, |
3897 | "%s(%s) and %s(%s) share the same label but have " |
3898 | "different datatypes.", |
3899 | rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]); |
3900 | lemp->errorcnt++; |
3901 | } |
3902 | }else{ |
3903 | lemon_sprintf(zOvwrt, "/*%s-overwrites-%s*/", |
3904 | rp->lhsalias, rp->rhsalias[0]); |
3905 | zSkip = strstr(rp->code, zOvwrt); |
3906 | if( zSkip!=0 ){ |
3907 | /* The code contains a special comment that indicates that it is safe |
3908 | ** for the LHS label to overwrite left-most RHS label. */ |
3909 | lhsdirect = 1; |
3910 | }else{ |
3911 | lhsdirect = 0; |
3912 | } |
3913 | } |
3914 | if( lhsdirect ){ |
3915 | sprintf(zLhs, "yymsp[%d].minor.yy%d",1-rp->nrhs,rp->lhs->dtnum); |
3916 | }else{ |
3917 | rc = 1; |
3918 | sprintf(zLhs, "yylhsminor.yy%d",rp->lhs->dtnum); |
3919 | } |
3920 | |
3921 | append_str(0,0,0,0); |
3922 | |
3923 | /* This const cast is wrong but harmless, if we're careful. */ |
3924 | for(cp=(char *)rp->code; *cp; cp++){ |
3925 | if( cp==zSkip ){ |
3926 | append_str(zOvwrt,0,0,0); |
3927 | cp += lemonStrlen(zOvwrt)((int)strlen(zOvwrt))-1; |
3928 | dontUseRhs0 = 1; |
3929 | continue; |
3930 | } |
3931 | if( ISALPHA(*cp)((*__ctype_b_loc ())[(int) (((unsigned char)(*cp)))] & (unsigned short int) _ISalpha) && (cp==rp->code || (!ISALNUM(cp[-1])((*__ctype_b_loc ())[(int) (((unsigned char)(cp[-1])))] & (unsigned short int) _ISalnum) && cp[-1]!='_')) ){ |
3932 | char saved; |
3933 | for(xp= &cp[1]; ISALNUM(*xp)((*__ctype_b_loc ())[(int) (((unsigned char)(*xp)))] & (unsigned short int) _ISalnum) || *xp=='_'; xp++); |
3934 | saved = *xp; |
3935 | *xp = 0; |
3936 | if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){ |
3937 | append_str(zLhs,0,0,0); |
3938 | cp = xp; |
3939 | lhsused = 1; |
3940 | }else{ |
3941 | for(i=0; i<rp->nrhs; i++){ |
3942 | if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){ |
3943 | if( i==0 && dontUseRhs0 ){ |
3944 | ErrorMsg(lemp->filename,rp->ruleline, |
3945 | "Label %s used after '%s'.", |
3946 | rp->rhsalias[0], zOvwrt); |
3947 | lemp->errorcnt++; |
3948 | }else if( cp!=rp->code && cp[-1]=='@' ){ |
3949 | /* If the argument is of the form @X then substituted |
3950 | ** the token number of X, not the value of X */ |
3951 | append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0); |
3952 | }else{ |
3953 | struct symbol *sp = rp->rhs[i]; |
3954 | int dtnum; |
3955 | if( sp->type==MULTITERMINAL ){ |
3956 | dtnum = sp->subsym[0]->dtnum; |
3957 | }else{ |
3958 | dtnum = sp->dtnum; |
3959 | } |
3960 | append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum); |
3961 | } |
3962 | cp = xp; |
3963 | used[i] = 1; |
3964 | break; |
3965 | } |
3966 | } |
3967 | } |
3968 | *xp = saved; |
3969 | } |
3970 | append_str(cp, 1, 0, 0); |
3971 | } /* End loop */ |
3972 | |
3973 | /* Main code generation completed */ |
3974 | cp = append_str(0,0,0,0); |
3975 | if( cp && cp[0] ) rp->code = Strsafe(cp); |
3976 | append_str(0,0,0,0); |
3977 | |
3978 | /* Check to make sure the LHS has been used */ |
3979 | if( rp->lhsalias && !lhsused ){ |
3980 | ErrorMsg(lemp->filename,rp->ruleline, |
3981 | "Label \"%s\" for \"%s(%s)\" is never used.", |
3982 | rp->lhsalias,rp->lhs->name,rp->lhsalias); |
3983 | lemp->errorcnt++; |
3984 | } |
3985 | |
3986 | /* Generate destructor code for RHS minor values which are not referenced. |
3987 | ** Generate error messages for unused labels and duplicate labels. |
3988 | */ |
3989 | for(i=0; i<rp->nrhs; i++){ |
3990 | if( rp->rhsalias[i] ){ |
3991 | if( i>0 ){ |
3992 | int j; |
3993 | if( rp->lhsalias && strcmp(rp->lhsalias,rp->rhsalias[i])==0 ){ |
3994 | ErrorMsg(lemp->filename,rp->ruleline, |
3995 | "%s(%s) has the same label as the LHS but is not the left-most " |
3996 | "symbol on the RHS.", |
3997 | rp->rhs[i]->name, rp->rhsalias[i]); |
3998 | lemp->errorcnt++; |
3999 | } |
4000 | for(j=0; j<i; j++){ |
4001 | if( rp->rhsalias[j] && strcmp(rp->rhsalias[j],rp->rhsalias[i])==0 ){ |
4002 | ErrorMsg(lemp->filename,rp->ruleline, |
4003 | "Label %s used for multiple symbols on the RHS of a rule.", |
4004 | rp->rhsalias[i]); |
4005 | lemp->errorcnt++; |
4006 | break; |
4007 | } |
4008 | } |
4009 | } |
4010 | if( !used[i] ){ |
4011 | ErrorMsg(lemp->filename,rp->ruleline, |
4012 | "Label %s for \"%s(%s)\" is never used.", |
4013 | rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]); |
4014 | lemp->errorcnt++; |
4015 | } |
4016 | }else if( i>0 && has_destructor(rp->rhs[i],lemp) ){ |
4017 | append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0, |
4018 | rp->rhs[i]->index,i-rp->nrhs+1); |
4019 | } |
4020 | } |
4021 | |
4022 | /* If unable to write LHS values directly into the stack, write the |
4023 | ** saved LHS value now. */ |
4024 | if( lhsdirect==0 ){ |
4025 | append_str(" yymsp[%d].minor.yy%d = ", 0, 1-rp->nrhs, rp->lhs->dtnum); |
4026 | append_str(zLhs, 0, 0, 0); |
4027 | append_str(";\n", 0, 0, 0); |
4028 | } |
4029 | |
4030 | /* Suffix code generation complete */ |
4031 | cp = append_str(0,0,0,0); |
4032 | if( cp && cp[0] ){ |
4033 | rp->codeSuffix = Strsafe(cp); |
4034 | rp->noCode = 0; |
4035 | } |
4036 | |
4037 | return rc; |
4038 | } |
4039 | |
4040 | /* |
4041 | ** Generate code which executes when the rule "rp" is reduced. Write |
4042 | ** the code to "out". Make sure lineno stays up-to-date. |
4043 | */ |
4044 | PRIVATE void emit_code( |
4045 | FILE *out, |
4046 | struct rule *rp, |
4047 | struct lemon *lemp, |
4048 | int *lineno |
4049 | ){ |
4050 | const char *cp; |
4051 | |
4052 | /* Setup code prior to the #line directive */ |
4053 | if( rp->codePrefix && rp->codePrefix[0] ){ |
4054 | fprintf(out, "{%s", rp->codePrefix); |
4055 | for(cp=rp->codePrefix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; } |
4056 | } |
4057 | |
4058 | /* Generate code to do the reduce action */ |
4059 | if( rp->code ){ |
4060 | if( !lemp->nolinenosflag ){ |
4061 | (*lineno)++; |
4062 | tplt_linedir(out,rp->line,lemp->filename); |
4063 | } |
4064 | fprintf(out,"{%s",rp->code); |
4065 | for(cp=rp->code; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; } |
4066 | fprintf(out,"}\n"); (*lineno)++; |
4067 | if( !lemp->nolinenosflag ){ |
4068 | (*lineno)++; |
4069 | tplt_linedir(out,*lineno,lemp->outname); |
4070 | } |
4071 | } |
4072 | |
4073 | /* Generate breakdown code that occurs after the #line directive */ |
4074 | if( rp->codeSuffix && rp->codeSuffix[0] ){ |
4075 | fprintf(out, "%s", rp->codeSuffix); |
4076 | for(cp=rp->codeSuffix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; } |
4077 | } |
4078 | |
4079 | if( rp->codePrefix ){ |
4080 | fprintf(out, "}\n"); (*lineno)++; |
4081 | } |
4082 | |
4083 | return; |
4084 | } |
4085 | |
4086 | /* |
4087 | ** Print the definition of the union used for the parser's data stack. |
4088 | ** This union contains fields for every possible data type for tokens |
4089 | ** and nonterminals. In the process of computing and printing this |
4090 | ** union, also set the ".dtnum" field of every terminal and nonterminal |
4091 | ** symbol. |
4092 | */ |
4093 | void print_stack_union( |
4094 | FILE *out, /* The output stream */ |
4095 | struct lemon *lemp, /* The main info structure for this parser */ |
4096 | int *plineno, /* Pointer to the line number */ |
4097 | int mhflag /* True if generating makeheaders output */ |
4098 | ){ |
4099 | int lineno; /* The line number of the output */ |
4100 | char **types; /* A hash table of datatypes */ |
4101 | int arraysize; /* Size of the "types" array */ |
4102 | int maxdtlength; /* Maximum length of any ".datatype" field. */ |
4103 | char *stddt; /* Standardized name for a datatype */ |
4104 | int i,j; /* Loop counters */ |
4105 | unsigned hash; /* For hashing the name of a type */ |
4106 | const char *name; /* Name of the parser */ |
4107 | |
4108 | /* Allocate and initialize types[] and allocate stddt[] */ |
4109 | arraysize = lemp->nsymbol * 2; |
4110 | types = (char**)calloc( arraysize, sizeof(char*) ); |
4111 | if( types==0 ){ |
4112 | fprintf(stderrstderr,"Out of memory.\n"); |
4113 | exit(1); |
4114 | } |
4115 | for(i=0; i<arraysize; i++) types[i] = 0; |
4116 | maxdtlength = 0; |
4117 | if( lemp->vartype ){ |
4118 | maxdtlength = lemonStrlen(lemp->vartype)((int)strlen(lemp->vartype)); |
4119 | } |
4120 | for(i=0; i<lemp->nsymbol; i++){ |
4121 | int len; |
4122 | struct symbol *sp = lemp->symbols[i]; |
4123 | if( sp->datatype==0 ) continue; |
4124 | len = lemonStrlen(sp->datatype)((int)strlen(sp->datatype)); |
4125 | if( len>maxdtlength ) maxdtlength = len; |
4126 | } |
4127 | stddt = (char*)malloc( maxdtlength*2 + 1 ); |
4128 | if( stddt==0 ){ |
4129 | fprintf(stderrstderr,"Out of memory.\n"); |
4130 | exit(1); |
4131 | } |
4132 | |
4133 | /* Build a hash table of datatypes. The ".dtnum" field of each symbol |
4134 | ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is |
4135 | ** used for terminal symbols. If there is no %default_type defined then |
4136 | ** 0 is also used as the .dtnum value for nonterminals which do not specify |
4137 | ** a datatype using the %type directive. |
4138 | */ |
4139 | for(i=0; i<lemp->nsymbol; i++){ |
4140 | struct symbol *sp = lemp->symbols[i]; |
4141 | char *cp; |
4142 | if( sp==lemp->errsym ){ |
4143 | sp->dtnum = arraysize+1; |
4144 | continue; |
4145 | } |
4146 | if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){ |
4147 | sp->dtnum = 0; |
4148 | continue; |
4149 | } |
4150 | cp = sp->datatype; |
4151 | if( cp==0 ) cp = lemp->vartype; |
4152 | j = 0; |
4153 | while( ISSPACE(*cp)((*__ctype_b_loc ())[(int) (((unsigned char)(*cp)))] & (unsigned short int) _ISspace) ) cp++; |
4154 | while( *cp ) stddt[j++] = *cp++; |
4155 | while( j>0 && ISSPACE(stddt[j-1])((*__ctype_b_loc ())[(int) (((unsigned char)(stddt[j-1])))] & (unsigned short int) _ISspace) ) j--; |
4156 | stddt[j] = 0; |
4157 | if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){ |
4158 | sp->dtnum = 0; |
4159 | continue; |
4160 | } |
4161 | hash = 0; |
4162 | for(j=0; stddt[j]; j++){ |
4163 | hash = hash*53 + stddt[j]; |
4164 | } |
4165 | hash = (hash & 0x7fffffff)%arraysize; |
4166 | while( types[hash] ){ |
4167 | if( strcmp(types[hash],stddt)==0 ){ |
4168 | sp->dtnum = hash + 1; |
4169 | break; |
4170 | } |
4171 | hash++; |
4172 | if( hash>=(unsigned)arraysize ) hash = 0; |
4173 | } |
4174 | if( types[hash]==0 ){ |
4175 | sp->dtnum = hash + 1; |
4176 | types[hash] = (char*)malloc( lemonStrlen(stddt)((int)strlen(stddt))+1 ); |
4177 | if( types[hash]==0 ){ |
4178 | fprintf(stderrstderr,"Out of memory.\n"); |
4179 | exit(1); |
4180 | } |
4181 | lemon_strcpy(types[hash],stddt); |
4182 | } |
4183 | } |
4184 | |
4185 | /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */ |
4186 | name = lemp->name ? lemp->name : "Parse"; |
4187 | lineno = *plineno; |
4188 | if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; } |
4189 | fprintf(out,"#define %sTOKENTYPE %s\n",name, |
4190 | lemp->tokentype?lemp->tokentype:"void*"); lineno++; |
4191 | if( mhflag ){ fprintf(out,"#endif\n"); lineno++; } |
4192 | fprintf(out,"typedef union {\n"); lineno++; |
4193 | fprintf(out," int yyinit;\n"); lineno++; |
4194 | fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++; |
4195 | for(i=0; i<arraysize; i++){ |
4196 | if( types[i]==0 ) continue; |
4197 | fprintf(out," %s yy%d;\n",types[i],i+1); lineno++; |
4198 | free(types[i]); |
4199 | } |
4200 | if( lemp->errsym && lemp->errsym->useCnt ){ |
4201 | fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++; |
4202 | } |
4203 | free(stddt); |
4204 | free(types); |
4205 | fprintf(out,"} YYMINORTYPE;\n"); lineno++; |
4206 | *plineno = lineno; |
4207 | } |
4208 | |
4209 | /* |
4210 | ** Return the name of a C datatype able to represent values between |
4211 | ** lwr and upr, inclusive. If pnByte!=NULL then also write the sizeof |
4212 | ** for that type (1, 2, or 4) into *pnByte. |
4213 | */ |
4214 | static const char *minimum_size_type(int lwr, int upr, int *pnByte){ |
4215 | const char *zType = "int"; |
4216 | int nByte = 4; |
4217 | if( lwr>=0 ){ |
4218 | if( upr<=255 ){ |
4219 | zType = "unsigned char"; |
4220 | nByte = 1; |
4221 | }else if( upr<65535 ){ |
4222 | zType = "unsigned short int"; |
4223 | nByte = 2; |
4224 | }else{ |
4225 | zType = "unsigned int"; |
4226 | nByte = 4; |
4227 | } |
4228 | }else if( lwr>=-127 && upr<=127 ){ |
4229 | zType = "signed char"; |
4230 | nByte = 1; |
4231 | }else if( lwr>=-32767 && upr<32767 ){ |
4232 | zType = "short"; |
4233 | nByte = 2; |
4234 | } |
4235 | if( pnByte ) *pnByte = nByte; |
4236 | return zType; |
4237 | } |
4238 | |
4239 | /* |
4240 | ** Each state contains a set of token transaction and a set of |
4241 | ** nonterminal transactions. Each of these sets makes an instance |
4242 | ** of the following structure. An array of these structures is used |
4243 | ** to order the creation of entries in the yy_action[] table. |
4244 | */ |
4245 | struct axset { |
4246 | struct state *stp; /* A pointer to a state */ |
4247 | int isTkn; /* True to use tokens. False for non-terminals */ |
4248 | int nAction; /* Number of actions */ |
4249 | int iOrder; /* Original order of action sets */ |
4250 | }; |
4251 | |
4252 | /* |
4253 | ** Compare to axset structures for sorting purposes |
4254 | */ |
4255 | static int axset_compare(const void *a, const void *b){ |
4256 | struct axset *p1 = (struct axset*)a; |
4257 | struct axset *p2 = (struct axset*)b; |
4258 | int c; |
4259 | c = p2->nAction - p1->nAction; |
4260 | if( c==0 ){ |
4261 | c = p1->iOrder - p2->iOrder; |
4262 | } |
4263 | assert( c!=0 || p1==p2 )((void) sizeof ((c!=0 || p1==p2) ? 1 : 0), __extension__ ({ if (c!=0 || p1==p2) ; else __assert_fail ("c!=0 || p1==p2", "tools/lemon/lemon.c" , 4263, __extension__ __PRETTY_FUNCTION__); })); |
4264 | return c; |
4265 | } |
4266 | |
4267 | /* |
4268 | ** Write text on "out" that describes the rule "rp". |
4269 | */ |
4270 | static void writeRuleText(FILE *out, struct rule *rp){ |
4271 | int j; |
4272 | fprintf(out,"%s ::=", rp->lhs->name); |
4273 | for(j=0; j<rp->nrhs; j++){ |
4274 | struct symbol *sp = rp->rhs[j]; |
4275 | if( sp->type!=MULTITERMINAL ){ |
4276 | fprintf(out," %s", sp->name); |
4277 | }else{ |
4278 | int k; |
4279 | fprintf(out," %s", sp->subsym[0]->name); |
4280 | for(k=1; k<sp->nsubsym; k++){ |
4281 | fprintf(out,"|%s",sp->subsym[k]->name); |
4282 | } |
4283 | } |
4284 | } |
4285 | } |
4286 | |
4287 | |
4288 | /* Generate C source code for the parser */ |
4289 | void ReportTable( |
4290 | struct lemon *lemp, |
4291 | int mhflag, /* Output in makeheaders format if true */ |
4292 | int sqlFlag /* Generate the *.sql file too */ |
4293 | ){ |
4294 | FILE *out, *in, *sql; |
4295 | int lineno; |
4296 | struct state *stp; |
4297 | struct action *ap; |
4298 | struct rule *rp; |
4299 | struct acttab *pActtab; |
4300 | int i, j, n, sz; |
4301 | int nLookAhead; |
4302 | int szActionType; /* sizeof(YYACTIONTYPE) */ |
4303 | int szCodeType; /* sizeof(YYCODETYPE) */ |
4304 | const char *name; |
4305 | int mnTknOfst, mxTknOfst; |
4306 | int mnNtOfst, mxNtOfst; |
4307 | struct axset *ax; |
4308 | char *prefix; |
4309 | |
4310 | lemp->minShiftReduce = lemp->nstate; |
4311 | lemp->errAction = lemp->minShiftReduce + lemp->nrule; |
4312 | lemp->accAction = lemp->errAction + 1; |
4313 | lemp->noAction = lemp->accAction + 1; |
4314 | lemp->minReduce = lemp->noAction + 1; |
4315 | lemp->maxAction = lemp->minReduce + lemp->nrule; |
4316 | |
4317 | in = tplt_open(lemp); |
4318 | if( in==0 ) return; |
4319 | out = file_open(lemp,".c","wb"); |
4320 | if( out==0 ){ |
4321 | fclose(in); |
4322 | return; |
4323 | } |
4324 | if( sqlFlag==0 ){ |
4325 | sql = 0; |
4326 | }else{ |
4327 | sql = file_open(lemp, ".sql", "wb"); |
4328 | if( sql==0 ){ |
4329 | fclose(in); |
4330 | fclose(out); |
4331 | return; |
4332 | } |
4333 | fprintf(sql, |
4334 | "BEGIN;\n" |
4335 | "CREATE TABLE symbol(\n" |
4336 | " id INTEGER PRIMARY KEY,\n" |
4337 | " name TEXT NOT NULL,\n" |
4338 | " isTerminal BOOLEAN NOT NULL,\n" |
4339 | " fallback INTEGER REFERENCES symbol" |
4340 | " DEFERRABLE INITIALLY DEFERRED\n" |
4341 | ");\n" |
4342 | ); |
4343 | for(i=0; i<lemp->nsymbol; i++){ |
4344 | fprintf(sql, |
4345 | "INSERT INTO symbol(id,name,isTerminal,fallback)" |
4346 | "VALUES(%d,'%s',%s", |
4347 | i, lemp->symbols[i]->name, |
4348 | i<lemp->nterminal ? "TRUE" : "FALSE" |
4349 | ); |
4350 | if( lemp->symbols[i]->fallback ){ |
4351 | fprintf(sql, ",%d);\n", lemp->symbols[i]->fallback->index); |
4352 | }else{ |
4353 | fprintf(sql, ",NULL);\n"); |
4354 | } |
4355 | } |
4356 | fprintf(sql, |
4357 | "CREATE TABLE rule(\n" |
4358 | " ruleid INTEGER PRIMARY KEY,\n" |
4359 | " lhs INTEGER REFERENCES symbol(id),\n" |
4360 | " txt TEXT\n" |
4361 | ");\n" |
4362 | "CREATE TABLE rulerhs(\n" |
4363 | " ruleid INTEGER REFERENCES rule(ruleid),\n" |
4364 | " pos INTEGER,\n" |
4365 | " sym INTEGER REFERENCES symbol(id)\n" |
4366 | ");\n" |
4367 | ); |
4368 | for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ |
4369 | assert( i==rp->iRule )((void) sizeof ((i==rp->iRule) ? 1 : 0), __extension__ ({ if (i==rp->iRule) ; else __assert_fail ("i==rp->iRule", "tools/lemon/lemon.c" , 4369, __extension__ __PRETTY_FUNCTION__); })); |
4370 | fprintf(sql, |
4371 | "INSERT INTO rule(ruleid,lhs,txt)VALUES(%d,%d,'", |
4372 | rp->iRule, rp->lhs->index |
4373 | ); |
4374 | writeRuleText(sql, rp); |
4375 | fprintf(sql,"');\n"); |
4376 | for(j=0; j<rp->nrhs; j++){ |
4377 | struct symbol *sp = rp->rhs[j]; |
4378 | if( sp->type!=MULTITERMINAL ){ |
4379 | fprintf(sql, |
4380 | "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n", |
4381 | i,j,sp->index |
4382 | ); |
4383 | }else{ |
4384 | int k; |
4385 | for(k=0; k<sp->nsubsym; k++){ |
4386 | fprintf(sql, |
4387 | "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n", |
4388 | i,j,sp->subsym[k]->index |
4389 | ); |
4390 | } |
4391 | } |
4392 | } |
4393 | } |
4394 | fprintf(sql, "COMMIT;\n"); |
4395 | } |
4396 | lineno = 1; |
4397 | |
4398 | fprintf(out, |
4399 | "/* This file is automatically generated by Lemon from input grammar\n" |
4400 | "** source file \"%s\". */\n", lemp->filename); lineno += 2; |
4401 | |
4402 | /* The first %include directive begins with a C-language comment, |
4403 | ** then skip over the header comment of the template file |
4404 | */ |
4405 | if( lemp->include==0 ) lemp->include = ""; |
4406 | for(i=0; ISSPACE(lemp->include[i])((*__ctype_b_loc ())[(int) (((unsigned char)(lemp->include [i])))] & (unsigned short int) _ISspace); i++){ |
4407 | if( lemp->include[i]=='\n' ){ |
4408 | lemp->include += i+1; |
4409 | i = -1; |
4410 | } |
4411 | } |
4412 | if( lemp->include[0]=='/' ){ |
4413 | tplt_skip_header(in,&lineno); |
4414 | }else{ |
4415 | tplt_xfer(lemp->name,in,out,&lineno); |
4416 | } |
4417 | |
4418 | /* Generate the include code, if any */ |
4419 | tplt_print(out,lemp,lemp->include,&lineno); |
4420 | if( mhflag ){ |
4421 | char *incName = file_makename(lemp, ".h"); |
4422 | fprintf(out,"#include \"%s\"\n", incName); lineno++; |
4423 | free(incName); |
4424 | } |
4425 | tplt_xfer(lemp->name,in,out,&lineno); |
4426 | |
4427 | /* Generate #defines for all tokens */ |
4428 | if( lemp->tokenprefix ) prefix = lemp->tokenprefix; |
4429 | else prefix = ""; |
4430 | if( mhflag ){ |
4431 | fprintf(out,"#if INTERFACE\n"); lineno++; |
4432 | }else{ |
4433 | fprintf(out,"#ifndef %s%s\n", prefix, lemp->symbols[1]->name); |
4434 | } |
4435 | for(i=1; i<lemp->nterminal; i++){ |
4436 | fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); |
4437 | lineno++; |
4438 | } |
4439 | fprintf(out,"#endif\n"); lineno++; |
4440 | tplt_xfer(lemp->name,in,out,&lineno); |
4441 | |
4442 | /* Generate the defines */ |
4443 | fprintf(out,"#define YYCODETYPE %s\n", |
4444 | minimum_size_type(0, lemp->nsymbol, &szCodeType)); lineno++; |
4445 | fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol); lineno++; |
4446 | fprintf(out,"#define YYACTIONTYPE %s\n", |
4447 | minimum_size_type(0,lemp->maxAction,&szActionType)); lineno++; |
4448 | if( lemp->wildcard ){ |
4449 | fprintf(out,"#define YYWILDCARD %d\n", |
4450 | lemp->wildcard->index); lineno++; |
4451 | } |
4452 | print_stack_union(out,lemp,&lineno,mhflag); |
4453 | fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++; |
4454 | if( lemp->stacksize ){ |
4455 | fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++; |
4456 | }else{ |
4457 | fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++; |
4458 | } |
4459 | fprintf(out, "#endif\n"); lineno++; |
4460 | if( mhflag ){ |
4461 | fprintf(out,"#if INTERFACE\n"); lineno++; |
4462 | } |
4463 | name = lemp->name ? lemp->name : "Parse"; |
4464 | if( lemp->arg && lemp->arg[0] ){ |
4465 | i = lemonStrlen(lemp->arg)((int)strlen(lemp->arg)); |
4466 | while( i>=1 && ISSPACE(lemp->arg[i-1])((*__ctype_b_loc ())[(int) (((unsigned char)(lemp->arg[i-1 ])))] & (unsigned short int) _ISspace) ) i--; |
4467 | while( i>=1 && (ISALNUM(lemp->arg[i-1])((*__ctype_b_loc ())[(int) (((unsigned char)(lemp->arg[i-1 ])))] & (unsigned short int) _ISalnum) || lemp->arg[i-1]=='_') ) i--; |
4468 | fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++; |
4469 | fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++; |
4470 | fprintf(out,"#define %sARG_PARAM ,%s\n",name,&lemp->arg[i]); lineno++; |
4471 | fprintf(out,"#define %sARG_FETCH %s=yypParser->%s;\n", |
4472 | name,lemp->arg,&lemp->arg[i]); lineno++; |
4473 | fprintf(out,"#define %sARG_STORE yypParser->%s=%s;\n", |
4474 | name,&lemp->arg[i],&lemp->arg[i]); lineno++; |
4475 | }else{ |
4476 | fprintf(out,"#define %sARG_SDECL\n",name); lineno++; |
4477 | fprintf(out,"#define %sARG_PDECL\n",name); lineno++; |
4478 | fprintf(out,"#define %sARG_PARAM\n",name); lineno++; |
4479 | fprintf(out,"#define %sARG_FETCH\n",name); lineno++; |
4480 | fprintf(out,"#define %sARG_STORE\n",name); lineno++; |
4481 | } |
4482 | if( lemp->ctx && lemp->ctx[0] ){ |
4483 | i = lemonStrlen(lemp->ctx)((int)strlen(lemp->ctx)); |
4484 | while( i>=1 && ISSPACE(lemp->ctx[i-1])((*__ctype_b_loc ())[(int) (((unsigned char)(lemp->ctx[i-1 ])))] & (unsigned short int) _ISspace) ) i--; |
4485 | while( i>=1 && (ISALNUM(lemp->ctx[i-1])((*__ctype_b_loc ())[(int) (((unsigned char)(lemp->ctx[i-1 ])))] & (unsigned short int) _ISalnum) || lemp->ctx[i-1]=='_') ) i--; |
4486 | fprintf(out,"#define %sCTX_SDECL %s;\n",name,lemp->ctx); lineno++; |
4487 | fprintf(out,"#define %sCTX_PDECL ,%s\n",name,lemp->ctx); lineno++; |
4488 | fprintf(out,"#define %sCTX_PARAM ,%s\n",name,&lemp->ctx[i]); lineno++; |
4489 | fprintf(out,"#define %sCTX_FETCH %s=yypParser->%s;\n", |
4490 | name,lemp->ctx,&lemp->ctx[i]); lineno++; |
4491 | fprintf(out,"#define %sCTX_STORE yypParser->%s=%s;\n", |
4492 | name,&lemp->ctx[i],&lemp->ctx[i]); lineno++; |
4493 | }else{ |
4494 | fprintf(out,"#define %sCTX_SDECL\n",name); lineno++; |
4495 | fprintf(out,"#define %sCTX_PDECL\n",name); lineno++; |
4496 | fprintf(out,"#define %sCTX_PARAM\n",name); lineno++; |
4497 | fprintf(out,"#define %sCTX_FETCH\n",name); lineno++; |
4498 | fprintf(out,"#define %sCTX_STORE\n",name); lineno++; |
4499 | } |
4500 | if( mhflag ){ |
4501 | fprintf(out,"#endif\n"); lineno++; |
4502 | } |
4503 | if( lemp->errsym && lemp->errsym->useCnt ){ |
4504 | fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++; |
4505 | fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++; |
4506 | } |
4507 | if( lemp->has_fallback ){ |
4508 | fprintf(out,"#define YYFALLBACK 1\n"); lineno++; |
4509 | } |
4510 | |
4511 | /* Compute the action table, but do not output it yet. The action |
4512 | ** table must be computed before generating the YYNSTATE macro because |
4513 | ** we need to know how many states can be eliminated. |
4514 | */ |
4515 | ax = (struct axset *) calloc(lemp->nxstate*2, sizeof(ax[0])); |
4516 | if( ax==0 ){ |
4517 | fprintf(stderrstderr,"malloc failed\n"); |
4518 | exit(1); |
4519 | } |
4520 | for(i=0; i<lemp->nxstate; i++){ |
4521 | stp = lemp->sorted[i]; |
4522 | ax[i*2].stp = stp; |
4523 | ax[i*2].isTkn = 1; |
4524 | ax[i*2].nAction = stp->nTknAct; |
4525 | ax[i*2+1].stp = stp; |
4526 | ax[i*2+1].isTkn = 0; |
4527 | ax[i*2+1].nAction = stp->nNtAct; |
4528 | } |
4529 | mxTknOfst = mnTknOfst = 0; |
4530 | mxNtOfst = mnNtOfst = 0; |
4531 | /* In an effort to minimize the action table size, use the heuristic |
4532 | ** of placing the largest action sets first */ |
4533 | for(i=0; i<lemp->nxstate*2; i++) ax[i].iOrder = i; |
4534 | qsort(ax, lemp->nxstate*2, sizeof(ax[0]), axset_compare); |
4535 | pActtab = acttab_alloc(lemp->nsymbol, lemp->nterminal); |
4536 | for(i=0; i<lemp->nxstate*2 && ax[i].nAction>0; i++){ |
4537 | stp = ax[i].stp; |
4538 | if( ax[i].isTkn ){ |
4539 | for(ap=stp->ap; ap; ap=ap->next){ |
4540 | int action; |
4541 | if( ap->sp->index>=lemp->nterminal ) continue; |
4542 | action = compute_action(lemp, ap); |
4543 | if( action<0 ) continue; |
4544 | acttab_action(pActtab, ap->sp->index, action); |
4545 | } |
4546 | stp->iTknOfst = acttab_insert(pActtab, 1); |
4547 | if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst; |
4548 | if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst; |
4549 | }else{ |
4550 | for(ap=stp->ap; ap; ap=ap->next){ |
4551 | int action; |
4552 | if( ap->sp->index<lemp->nterminal ) continue; |
4553 | if( ap->sp->index==lemp->nsymbol ) continue; |
4554 | action = compute_action(lemp, ap); |
4555 | if( action<0 ) continue; |
4556 | acttab_action(pActtab, ap->sp->index, action); |
4557 | } |
4558 | stp->iNtOfst = acttab_insert(pActtab, 0); |
4559 | if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst; |
4560 | if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst; |
4561 | } |
4562 | #if 0 /* Uncomment for a trace of how the yy_action[] table fills out */ |
4563 | { int jj, nn; |
4564 | for(jj=nn=0; jj<pActtab->nAction; jj++){ |
4565 | if( pActtab->aAction[jj].action<0 ) nn++; |
4566 | } |
4567 | printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n", |
4568 | i, stp->statenum, ax[i].isTkn ? "Token" : "Var ", |
4569 | ax[i].nAction, pActtab->nAction, nn); |
4570 | } |
4571 | #endif |
4572 | } |
4573 | free(ax); |
4574 | |
4575 | /* Mark rules that are actually used for reduce actions after all |
4576 | ** optimizations have been applied |
4577 | */ |
4578 | for(rp=lemp->rule; rp; rp=rp->next) rp->doesReduce = LEMON_FALSE; |
4579 | for(i=0; i<lemp->nxstate; i++){ |
4580 | for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ |
4581 | if( ap->type==REDUCE || ap->type==SHIFTREDUCE ){ |
4582 | ap->x.rp->doesReduce = 1; |
4583 | } |
4584 | } |
4585 | } |
4586 | |
4587 | /* Finish rendering the constants now that the action table has |
4588 | ** been computed */ |
4589 | fprintf(out,"#define YYNSTATE %d\n",lemp->nxstate); lineno++; |
4590 | fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++; |
4591 | fprintf(out,"#define YYNRULE_WITH_ACTION %d\n",lemp->nruleWithAction); |
4592 | lineno++; |
4593 | fprintf(out,"#define YYNTOKEN %d\n",lemp->nterminal); lineno++; |
4594 | fprintf(out,"#define YY_MAX_SHIFT %d\n",lemp->nxstate-1); lineno++; |
4595 | i = lemp->minShiftReduce; |
4596 | fprintf(out,"#define YY_MIN_SHIFTREDUCE %d\n",i); lineno++; |
4597 | i += lemp->nrule; |
4598 | fprintf(out,"#define YY_MAX_SHIFTREDUCE %d\n", i-1); lineno++; |
4599 | fprintf(out,"#define YY_ERROR_ACTION %d\n", lemp->errAction); lineno++; |
4600 | fprintf(out,"#define YY_ACCEPT_ACTION %d\n", lemp->accAction); lineno++; |
4601 | fprintf(out,"#define YY_NO_ACTION %d\n", lemp->noAction); lineno++; |
4602 | fprintf(out,"#define YY_MIN_REDUCE %d\n", lemp->minReduce); lineno++; |
4603 | i = lemp->minReduce + lemp->nrule; |
4604 | fprintf(out,"#define YY_MAX_REDUCE %d\n", i-1); lineno++; |
4605 | tplt_xfer(lemp->name,in,out,&lineno); |
4606 | |
4607 | /* Now output the action table and its associates: |
4608 | ** |
4609 | ** yy_action[] A single table containing all actions. |
4610 | ** yy_lookahead[] A table containing the lookahead for each entry in |
4611 | ** yy_action. Used to detect hash collisions. |
4612 | ** yy_shift_ofst[] For each state, the offset into yy_action for |
4613 | ** shifting terminals. |
4614 | ** yy_reduce_ofst[] For each state, the offset into yy_action for |
4615 | ** shifting non-terminals after a reduce. |
4616 | ** yy_default[] Default action for each state. |
4617 | */ |
4618 | |
4619 | /* Output the yy_action table */ |
4620 | lemp->nactiontab = n = acttab_action_size(pActtab); |
4621 | lemp->tablesize += n*szActionType; |
4622 | fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++; |
4623 | fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++; |
4624 | for(i=j=0; i<n; i++){ |
4625 | int action = acttab_yyaction(pActtab, i)((pActtab)->aAction[i].action); |
4626 | if( action<0 ) action = lemp->noAction; |
4627 | if( j==0 ) fprintf(out," /* %5d */ ", i); |
4628 | fprintf(out, " %4d,", action); |
4629 | if( j==9 || i==n-1 ){ |
4630 | fprintf(out, "\n"); lineno++; |
4631 | j = 0; |
4632 | }else{ |
4633 | j++; |
4634 | } |
4635 | } |
4636 | fprintf(out, "};\n"); lineno++; |
4637 | |
4638 | /* Output the yy_lookahead table */ |
4639 | lemp->nlookaheadtab = n = acttab_lookahead_size(pActtab)((pActtab)->nAction); |
4640 | lemp->tablesize += n*szCodeType; |
4641 | fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++; |
4642 | for(i=j=0; i<n; i++){ |
4643 | int la = acttab_yylookahead(pActtab, i)((pActtab)->aAction[i].lookahead); |
4644 | if( la<0 ) la = lemp->nsymbol; |
4645 | if( j==0 ) fprintf(out," /* %5d */ ", i); |
4646 | fprintf(out, " %4d,", la); |
4647 | if( j==9 ){ |
4648 | fprintf(out, "\n"); lineno++; |
4649 | j = 0; |
4650 | }else{ |
4651 | j++; |
4652 | } |
4653 | } |
4654 | /* Add extra entries to the end of the yy_lookahead[] table so that |
4655 | ** yy_shift_ofst[]+iToken will always be a valid index into the array, |
4656 | ** even for the largest possible value of yy_shift_ofst[] and iToken. */ |
4657 | nLookAhead = lemp->nterminal + lemp->nactiontab; |
4658 | while( i<nLookAhead ){ |
4659 | if( j==0 ) fprintf(out," /* %5d */ ", i); |
4660 | fprintf(out, " %4d,", lemp->nterminal); |
4661 | if( j==9 ){ |
4662 | fprintf(out, "\n"); lineno++; |
4663 | j = 0; |
4664 | }else{ |
4665 | j++; |
4666 | } |
4667 | i++; |
4668 | } |
4669 | if( j>0 ){ fprintf(out, "\n"); lineno++; } |
4670 | fprintf(out, "};\n"); lineno++; |
4671 | |
4672 | /* Output the yy_shift_ofst[] table */ |
4673 | n = lemp->nxstate; |
4674 | while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET(-2147483647) ) n--; |
4675 | fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++; |
4676 | fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++; |
4677 | fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++; |
4678 | fprintf(out, "static const %s yy_shift_ofst[] = {\n", |
4679 | minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz)); |
4680 | lineno++; |
4681 | lemp->tablesize += n*sz; |
4682 | for(i=j=0; i<n; i++){ |
4683 | int ofst; |
4684 | stp = lemp->sorted[i]; |
4685 | ofst = stp->iTknOfst; |
4686 | if( ofst==NO_OFFSET(-2147483647) ) ofst = lemp->nactiontab; |
4687 | if( j==0 ) fprintf(out," /* %5d */ ", i); |
4688 | fprintf(out, " %4d,", ofst); |
4689 | if( j==9 || i==n-1 ){ |
4690 | fprintf(out, "\n"); lineno++; |
4691 | j = 0; |
4692 | }else{ |
4693 | j++; |
4694 | } |
4695 | } |
4696 | fprintf(out, "};\n"); lineno++; |
4697 | |
4698 | /* Output the yy_reduce_ofst[] table */ |
4699 | n = lemp->nxstate; |
4700 | while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET(-2147483647) ) n--; |
4701 | fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++; |
4702 | fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++; |
4703 | fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++; |
4704 | fprintf(out, "static const %s yy_reduce_ofst[] = {\n", |
4705 | minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++; |
4706 | lemp->tablesize += n*sz; |
4707 | for(i=j=0; i<n; i++){ |
4708 | int ofst; |
4709 | stp = lemp->sorted[i]; |
4710 | ofst = stp->iNtOfst; |
4711 | if( ofst==NO_OFFSET(-2147483647) ) ofst = mnNtOfst - 1; |
4712 | if( j==0 ) fprintf(out," /* %5d */ ", i); |
4713 | fprintf(out, " %4d,", ofst); |
4714 | if( j==9 || i==n-1 ){ |
4715 | fprintf(out, "\n"); lineno++; |
4716 | j = 0; |
4717 | }else{ |
4718 | j++; |
4719 | } |
4720 | } |
4721 | fprintf(out, "};\n"); lineno++; |
4722 | |
4723 | /* Output the default action table */ |
4724 | fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++; |
4725 | n = lemp->nxstate; |
4726 | lemp->tablesize += n*szActionType; |
4727 | for(i=j=0; i<n; i++){ |
4728 | stp = lemp->sorted[i]; |
4729 | if( j==0 ) fprintf(out," /* %5d */ ", i); |
4730 | if( stp->iDfltReduce<0 ){ |
4731 | fprintf(out, " %4d,", lemp->errAction); |
4732 | }else{ |
4733 | fprintf(out, " %4d,", stp->iDfltReduce + lemp->minReduce); |
4734 | } |
4735 | if( j==9 || i==n-1 ){ |
4736 | fprintf(out, "\n"); lineno++; |
4737 | j = 0; |
4738 | }else{ |
4739 | j++; |
4740 | } |
4741 | } |
4742 | fprintf(out, "};\n"); lineno++; |
4743 | tplt_xfer(lemp->name,in,out,&lineno); |
4744 | |
4745 | /* Generate the table of fallback tokens. |
4746 | */ |
4747 | if( lemp->has_fallback ){ |
4748 | int mx = lemp->nterminal - 1; |
4749 | /* 2019-08-28: Generate fallback entries for every token to avoid |
4750 | ** having to do a range check on the index */ |
4751 | /* while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } */ |
4752 | lemp->tablesize += (mx+1)*szCodeType; |
4753 | for(i=0; i<=mx; i++){ |
4754 | struct symbol *p = lemp->symbols[i]; |
4755 | if( p->fallback==0 ){ |
4756 | fprintf(out, " 0, /* %10s => nothing */\n", p->name); |
4757 | }else{ |
4758 | fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index, |
4759 | p->name, p->fallback->name); |
4760 | } |
4761 | lineno++; |
4762 | } |
4763 | } |
4764 | tplt_xfer(lemp->name, in, out, &lineno); |
4765 | |
4766 | /* Generate a table containing the symbolic name of every symbol |
4767 | */ |
4768 | for(i=0; i<lemp->nsymbol; i++){ |
4769 | fprintf(out," /* %4d */ \"%s\",\n",i, lemp->symbols[i]->name); lineno++; |
4770 | } |
4771 | tplt_xfer(lemp->name,in,out,&lineno); |
4772 | |
4773 | /* Generate a table containing a text string that describes every |
4774 | ** rule in the rule set of the grammar. This information is used |
4775 | ** when tracing REDUCE actions. |
4776 | */ |
4777 | for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ |
4778 | assert( rp->iRule==i )((void) sizeof ((rp->iRule==i) ? 1 : 0), __extension__ ({ if (rp->iRule==i) ; else __assert_fail ("rp->iRule==i", "tools/lemon/lemon.c" , 4778, __extension__ __PRETTY_FUNCTION__); })); |
4779 | fprintf(out," /* %3d */ \"", i); |
4780 | writeRuleText(out, rp); |
4781 | fprintf(out,"\",\n"); lineno++; |
4782 | } |
4783 | tplt_xfer(lemp->name,in,out,&lineno); |
4784 | |
4785 | /* Generate code which executes every time a symbol is popped from |
4786 | ** the stack while processing errors or while destroying the parser. |
4787 | ** (In other words, generate the %destructor actions) |
4788 | */ |
4789 | if( lemp->tokendest ){ |
4790 | int once = 1; |
4791 | for(i=0; i<lemp->nsymbol; i++){ |
4792 | struct symbol *sp = lemp->symbols[i]; |
4793 | if( sp==0 || sp->type!=TERMINAL ) continue; |
4794 | if( once ){ |
4795 | fprintf(out, " /* TERMINAL Destructor */\n"); lineno++; |
4796 | once = 0; |
4797 | } |
4798 | fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; |
4799 | } |
4800 | for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++); |
4801 | if( i<lemp->nsymbol ){ |
4802 | emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); |
4803 | fprintf(out," break;\n"); lineno++; |
4804 | } |
4805 | } |
4806 | if( lemp->vardest ){ |
4807 | struct symbol *dflt_sp = 0; |
4808 | int once = 1; |
4809 | for(i=0; i<lemp->nsymbol; i++){ |
4810 | struct symbol *sp = lemp->symbols[i]; |
4811 | if( sp==0 || sp->type==TERMINAL || |
4812 | sp->index<=0 || sp->destructor!=0 ) continue; |
4813 | if( once ){ |
4814 | fprintf(out, " /* Default NON-TERMINAL Destructor */\n");lineno++; |
4815 | once = 0; |
4816 | } |
4817 | fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; |
4818 | dflt_sp = sp; |
4819 | } |
4820 | if( dflt_sp!=0 ){ |
4821 | emit_destructor_code(out,dflt_sp,lemp,&lineno); |
4822 | } |
4823 | fprintf(out," break;\n"); lineno++; |
4824 | } |
4825 | for(i=0; i<lemp->nsymbol; i++){ |
4826 | struct symbol *sp = lemp->symbols[i]; |
4827 | if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue; |
4828 | if( sp->destLineno<0 ) continue; /* Already emitted */ |
4829 | fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; |
4830 | |
4831 | /* Combine duplicate destructors into a single case */ |
4832 | for(j=i+1; j<lemp->nsymbol; j++){ |
4833 | struct symbol *sp2 = lemp->symbols[j]; |
4834 | if( sp2 && sp2->type!=TERMINAL && sp2->destructor |
4835 | && sp2->dtnum==sp->dtnum |
4836 | && strcmp(sp->destructor,sp2->destructor)==0 ){ |
4837 | fprintf(out," case %d: /* %s */\n", |
4838 | sp2->index, sp2->name); lineno++; |
4839 | sp2->destLineno = -1; /* Avoid emitting this destructor again */ |
4840 | } |
4841 | } |
4842 | |
4843 | emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); |
4844 | fprintf(out," break;\n"); lineno++; |
4845 | } |
4846 | tplt_xfer(lemp->name,in,out,&lineno); |
4847 | |
4848 | /* Generate code which executes whenever the parser stack overflows */ |
4849 | tplt_print(out,lemp,lemp->overflow,&lineno); |
4850 | tplt_xfer(lemp->name,in,out,&lineno); |
4851 | |
4852 | /* Generate the tables of rule information. yyRuleInfoLhs[] and |
4853 | ** yyRuleInfoNRhs[]. |
4854 | ** |
4855 | ** Note: This code depends on the fact that rules are number |
4856 | ** sequentially beginning with 0. |
4857 | */ |
4858 | for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ |
4859 | fprintf(out," %4d, /* (%d) ", rp->lhs->index, i); |
4860 | rule_print(out, rp); |
4861 | fprintf(out," */\n"); lineno++; |
4862 | } |
4863 | tplt_xfer(lemp->name,in,out,&lineno); |
4864 | for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ |
4865 | fprintf(out," %3d, /* (%d) ", -rp->nrhs, i); |
4866 | rule_print(out, rp); |
4867 | fprintf(out," */\n"); lineno++; |
4868 | } |
4869 | tplt_xfer(lemp->name,in,out,&lineno); |
4870 | |
4871 | /* Generate code which execution during each REDUCE action */ |
4872 | i = 0; |
4873 | for(rp=lemp->rule; rp; rp=rp->next){ |
4874 | i += translate_code(lemp, rp); |
4875 | } |
4876 | if( i ){ |
4877 | fprintf(out," YYMINORTYPE yylhsminor;\n"); lineno++; |
4878 | } |
4879 | /* First output rules other than the default: rule */ |
4880 | for(rp=lemp->rule; rp; rp=rp->next){ |
4881 | struct rule *rp2; /* Other rules with the same action */ |
4882 | if( rp->codeEmitted ) continue; |
4883 | if( rp->noCode ){ |
4884 | /* No C code actions, so this will be part of the "default:" rule */ |
4885 | continue; |
4886 | } |
4887 | fprintf(out," case %d: /* ", rp->iRule); |
4888 | writeRuleText(out, rp); |
4889 | fprintf(out, " */\n"); lineno++; |
4890 | for(rp2=rp->next; rp2; rp2=rp2->next){ |
4891 | if( rp2->code==rp->code && rp2->codePrefix==rp->codePrefix |
4892 | && rp2->codeSuffix==rp->codeSuffix ){ |
4893 | fprintf(out," case %d: /* ", rp2->iRule); |
4894 | writeRuleText(out, rp2); |
4895 | fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->iRule); lineno++; |
4896 | rp2->codeEmitted = 1; |
4897 | } |
4898 | } |
4899 | emit_code(out,rp,lemp,&lineno); |
4900 | fprintf(out," break;\n"); lineno++; |
4901 | rp->codeEmitted = 1; |
4902 | } |
4903 | /* Finally, output the default: rule. We choose as the default: all |
4904 | ** empty actions. */ |
4905 | fprintf(out," default:\n"); lineno++; |
4906 | for(rp=lemp->rule; rp; rp=rp->next){ |
4907 | if( rp->codeEmitted ) continue; |
4908 | assert( rp->noCode )((void) sizeof ((rp->noCode) ? 1 : 0), __extension__ ({ if (rp->noCode) ; else __assert_fail ("rp->noCode", "tools/lemon/lemon.c" , 4908, __extension__ __PRETTY_FUNCTION__); })); |
4909 | fprintf(out," /* (%d) ", rp->iRule); |
4910 | writeRuleText(out, rp); |
4911 | if( rp->neverReduce ){ |
4912 | fprintf(out, " (NEVER REDUCES) */ assert(yyruleno!=%d);\n", |
4913 | rp->iRule); lineno++; |
4914 | }else if( rp->doesReduce ){ |
4915 | fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->iRule); lineno++; |
4916 | }else{ |
4917 | fprintf(out, " (OPTIMIZED OUT) */ assert(yyruleno!=%d);\n", |
4918 | rp->iRule); lineno++; |
4919 | } |
4920 | } |
4921 | fprintf(out," break;\n"); lineno++; |
4922 | tplt_xfer(lemp->name,in,out,&lineno); |
4923 | |
4924 | /* Generate code which executes if a parse fails */ |
4925 | tplt_print(out,lemp,lemp->failure,&lineno); |
4926 | tplt_xfer(lemp->name,in,out,&lineno); |
4927 | |
4928 | /* Generate code which executes when a syntax error occurs */ |
4929 | tplt_print(out,lemp,lemp->error,&lineno); |
4930 | tplt_xfer(lemp->name,in,out,&lineno); |
4931 | |
4932 | /* Generate code which executes when the parser accepts its input */ |
4933 | tplt_print(out,lemp,lemp->accept,&lineno); |
4934 | tplt_xfer(lemp->name,in,out,&lineno); |
4935 | |
4936 | /* Append any addition code the user desires */ |
4937 | tplt_print(out,lemp,lemp->extracode,&lineno); |
4938 | |
4939 | acttab_free(pActtab); |
4940 | fclose(in); |
4941 | fclose(out); |
4942 | if( sql ) fclose(sql); |
4943 | return; |
4944 | } |
4945 | |
4946 | /* Generate a header file for the parser */ |
4947 | void ReportHeader(struct lemon *lemp) |
4948 | { |
4949 | FILE *out, *in; |
4950 | const char *prefix; |
4951 | char line[LINESIZE1000]; |
4952 | char pattern[LINESIZE1000]; |
4953 | int i; |
4954 | |
4955 | if( lemp->tokenprefix ) prefix = lemp->tokenprefix; |
4956 | else prefix = ""; |
4957 | in = file_open(lemp,".h","rb"); |
4958 | if( in ){ |
4959 | int nextChar; |
4960 | for(i=1; i<lemp->nterminal && fgets(line,LINESIZE1000,in); i++){ |
4961 | lemon_sprintf(pattern,"#define %s%-30s %3d\n", |
4962 | prefix,lemp->symbols[i]->name,i); |
4963 | if( strcmp(line,pattern) ) break; |
4964 | } |
4965 | nextChar = fgetc(in); |
4966 | fclose(in); |
4967 | if( i==lemp->nterminal && nextChar==EOF(-1) ){ |
4968 | /* No change in the file. Don't rewrite it. */ |
4969 | return; |
4970 | } |
4971 | } |
4972 | out = file_open(lemp,".h","wb"); |
4973 | if( out ){ |
4974 | for(i=1; i<lemp->nterminal; i++){ |
4975 | fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i); |
4976 | } |
4977 | fclose(out); |
4978 | } |
4979 | return; |
4980 | } |
4981 | |
4982 | /* Reduce the size of the action tables, if possible, by making use |
4983 | ** of defaults. |
4984 | ** |
4985 | ** In this version, we take the most frequent REDUCE action and make |
4986 | ** it the default. Except, there is no default if the wildcard token |
4987 | ** is a possible look-ahead. |
4988 | */ |
4989 | void CompressTables(struct lemon *lemp) |
4990 | { |
4991 | struct state *stp; |
4992 | struct action *ap, *ap2, *nextap; |
4993 | struct rule *rp, *rp2, *rbest; |
4994 | int nbest, n; |
4995 | int i; |
4996 | int usesWildcard; |
4997 | |
4998 | for(i=0; i<lemp->nstate; i++){ |
4999 | stp = lemp->sorted[i]; |
5000 | nbest = 0; |
5001 | rbest = 0; |
5002 | usesWildcard = 0; |
5003 | |
5004 | for(ap=stp->ap; ap; ap=ap->next){ |
5005 | if( ap->type==SHIFT && ap->sp==lemp->wildcard ){ |
5006 | usesWildcard = 1; |
5007 | } |
5008 | if( ap->type!=REDUCE ) continue; |
5009 | rp = ap->x.rp; |
5010 | if( rp->lhsStart ) continue; |
5011 | if( rp==rbest ) continue; |
5012 | n = 1; |
5013 | for(ap2=ap->next; ap2; ap2=ap2->next){ |
5014 | if( ap2->type!=REDUCE ) continue; |
5015 | rp2 = ap2->x.rp; |
5016 | if( rp2==rbest ) continue; |
5017 | if( rp2==rp ) n++; |
5018 | } |
5019 | if( n>nbest ){ |
5020 | nbest = n; |
5021 | rbest = rp; |
5022 | } |
5023 | } |
5024 | |
5025 | /* Do not make a default if the number of rules to default |
5026 | ** is not at least 1 or if the wildcard token is a possible |
5027 | ** lookahead. |
5028 | */ |
5029 | if( nbest<1 || usesWildcard ) continue; |
5030 | |
5031 | |
5032 | /* Combine matching REDUCE actions into a single default */ |
5033 | for(ap=stp->ap; ap; ap=ap->next){ |
5034 | if( ap->type==REDUCE && ap->x.rp==rbest ) break; |
5035 | } |
5036 | assert( ap )((void) sizeof ((ap) ? 1 : 0), __extension__ ({ if (ap) ; else __assert_fail ("ap", "tools/lemon/lemon.c", 5036, __extension__ __PRETTY_FUNCTION__); })); |
5037 | ap->sp = Symbol_new("{default}"); |
5038 | for(ap=ap->next; ap; ap=ap->next){ |
5039 | if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED; |
5040 | } |
5041 | stp->ap = Action_sort(stp->ap); |
5042 | |
5043 | for(ap=stp->ap; ap; ap=ap->next){ |
5044 | if( ap->type==SHIFT ) break; |
5045 | if( ap->type==REDUCE && ap->x.rp!=rbest ) break; |
5046 | } |
5047 | if( ap==0 ){ |
5048 | stp->autoReduce = 1; |
5049 | stp->pDfltReduce = rbest; |
5050 | } |
5051 | } |
5052 | |
5053 | /* Make a second pass over all states and actions. Convert |
5054 | ** every action that is a SHIFT to an autoReduce state into |
5055 | ** a SHIFTREDUCE action. |
5056 | */ |
5057 | for(i=0; i<lemp->nstate; i++){ |
5058 | stp = lemp->sorted[i]; |
5059 | for(ap=stp->ap; ap; ap=ap->next){ |
5060 | struct state *pNextState; |
5061 | if( ap->type!=SHIFT ) continue; |
5062 | pNextState = ap->x.stp; |
5063 | if( pNextState->autoReduce && pNextState->pDfltReduce!=0 ){ |
5064 | ap->type = SHIFTREDUCE; |
5065 | ap->x.rp = pNextState->pDfltReduce; |
5066 | } |
5067 | } |
5068 | } |
5069 | |
5070 | /* If a SHIFTREDUCE action specifies a rule that has a single RHS term |
5071 | ** (meaning that the SHIFTREDUCE will land back in the state where it |
5072 | ** started) and if there is no C-code associated with the reduce action, |
5073 | ** then we can go ahead and convert the action to be the same as the |
5074 | ** action for the RHS of the rule. |
5075 | */ |
5076 | for(i=0; i<lemp->nstate; i++){ |
5077 | stp = lemp->sorted[i]; |
5078 | for(ap=stp->ap; ap; ap=nextap){ |
5079 | nextap = ap->next; |
5080 | if( ap->type!=SHIFTREDUCE ) continue; |
5081 | rp = ap->x.rp; |
5082 | if( rp->noCode==0 ) continue; |
5083 | if( rp->nrhs!=1 ) continue; |
5084 | #if 1 |
5085 | /* Only apply this optimization to non-terminals. It would be OK to |
5086 | ** apply it to terminal symbols too, but that makes the parser tables |
5087 | ** larger. */ |
5088 | if( ap->sp->index<lemp->nterminal ) continue; |
5089 | #endif |
5090 | /* If we reach this point, it means the optimization can be applied */ |
5091 | nextap = ap; |
5092 | for(ap2=stp->ap; ap2 && (ap2==ap || ap2->sp!=rp->lhs); ap2=ap2->next){} |
5093 | assert( ap2!=0 )((void) sizeof ((ap2!=0) ? 1 : 0), __extension__ ({ if (ap2!= 0) ; else __assert_fail ("ap2!=0", "tools/lemon/lemon.c", 5093 , __extension__ __PRETTY_FUNCTION__); })); |
5094 | ap->spOpt = ap2->sp; |
5095 | ap->type = ap2->type; |
5096 | ap->x = ap2->x; |
5097 | } |
5098 | } |
5099 | } |
5100 | |
5101 | |
5102 | /* |
5103 | ** Compare two states for sorting purposes. The smaller state is the |
5104 | ** one with the most non-terminal actions. If they have the same number |
5105 | ** of non-terminal actions, then the smaller is the one with the most |
5106 | ** token actions. |
5107 | */ |
5108 | static int stateResortCompare(const void *a, const void *b){ |
5109 | const struct state *pA = *(const struct state**)a; |
5110 | const struct state *pB = *(const struct state**)b; |
5111 | int n; |
5112 | |
5113 | n = pB->nNtAct - pA->nNtAct; |
5114 | if( n==0 ){ |
5115 | n = pB->nTknAct - pA->nTknAct; |
5116 | if( n==0 ){ |
5117 | n = pB->statenum - pA->statenum; |
5118 | } |
5119 | } |
5120 | assert( n!=0 )((void) sizeof ((n!=0) ? 1 : 0), __extension__ ({ if (n!=0) ; else __assert_fail ("n!=0", "tools/lemon/lemon.c", 5120, __extension__ __PRETTY_FUNCTION__); })); |
5121 | return n; |
5122 | } |
5123 | |
5124 | |
5125 | /* |
5126 | ** Renumber and resort states so that states with fewer choices |
5127 | ** occur at the end. Except, keep state 0 as the first state. |
5128 | */ |
5129 | void ResortStates(struct lemon *lemp) |
5130 | { |
5131 | int i; |
5132 | struct state *stp; |
5133 | struct action *ap; |
5134 | |
5135 | for(i=0; i<lemp->nstate; i++){ |
5136 | stp = lemp->sorted[i]; |
5137 | stp->nTknAct = stp->nNtAct = 0; |
5138 | stp->iDfltReduce = -1; /* Init dflt action to "syntax error" */ |
5139 | stp->iTknOfst = NO_OFFSET(-2147483647); |
5140 | stp->iNtOfst = NO_OFFSET(-2147483647); |
5141 | for(ap=stp->ap; ap; ap=ap->next){ |
5142 | int iAction = compute_action(lemp,ap); |
5143 | if( iAction>=0 ){ |
5144 | if( ap->sp->index<lemp->nterminal ){ |
5145 | stp->nTknAct++; |
5146 | }else if( ap->sp->index<lemp->nsymbol ){ |
5147 | stp->nNtAct++; |
5148 | }else{ |
5149 | assert( stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp )((void) sizeof ((stp->autoReduce==0 || stp->pDfltReduce ==ap->x.rp) ? 1 : 0), __extension__ ({ if (stp->autoReduce ==0 || stp->pDfltReduce==ap->x.rp) ; else __assert_fail ("stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp" , "tools/lemon/lemon.c", 5149, __extension__ __PRETTY_FUNCTION__ ); })); |
5150 | stp->iDfltReduce = iAction; |
5151 | } |
5152 | } |
5153 | } |
5154 | } |
5155 | qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]), |
5156 | stateResortCompare); |
5157 | for(i=0; i<lemp->nstate; i++){ |
5158 | lemp->sorted[i]->statenum = i; |
5159 | } |
5160 | lemp->nxstate = lemp->nstate; |
5161 | while( lemp->nxstate>1 && lemp->sorted[lemp->nxstate-1]->autoReduce ){ |
5162 | lemp->nxstate--; |
5163 | } |
5164 | } |
5165 | |
5166 | |
5167 | /***************** From the file "set.c" ************************************/ |
5168 | /* |
5169 | ** Set manipulation routines for the LEMON parser generator. |
5170 | */ |
5171 | |
5172 | static int size = 0; |
5173 | |
5174 | /* Set the set size */ |
5175 | void SetSize(int n) |
5176 | { |
5177 | size = n+1; |
5178 | } |
5179 | |
5180 | /* Allocate a new set */ |
5181 | char *SetNew(void){ |
5182 | char *s; |
5183 | s = (char*)calloc( size, 1); |
5184 | if( s==0 ){ |
5185 | memory_error(); |
5186 | } |
5187 | return s; |
5188 | } |
5189 | |
5190 | /* Deallocate a set */ |
5191 | void SetFree(char *s) |
5192 | { |
5193 | free(s); |
5194 | } |
5195 | |
5196 | /* Add a new element to the set. Return TRUE if the element was added |
5197 | ** and FALSE if it was already there. */ |
5198 | int SetAdd(char *s, int e) |
5199 | { |
5200 | int rv; |
5201 | assert( e>=0 && e<size )((void) sizeof ((e>=0 && e<size) ? 1 : 0), __extension__ ({ if (e>=0 && e<size) ; else __assert_fail ("e>=0 && e<size" , "tools/lemon/lemon.c", 5201, __extension__ __PRETTY_FUNCTION__ ); })); |
5202 | rv = s[e]; |
5203 | s[e] = 1; |
5204 | return !rv; |
5205 | } |
5206 | |
5207 | /* Add every element of s2 to s1. Return TRUE if s1 changes. */ |
5208 | int SetUnion(char *s1, char *s2) |
5209 | { |
5210 | int i, progress; |
5211 | progress = 0; |
5212 | for(i=0; i<size; i++){ |
5213 | if( s2[i]==0 ) continue; |
5214 | if( s1[i]==0 ){ |
5215 | progress = 1; |
5216 | s1[i] = 1; |
5217 | } |
5218 | } |
5219 | return progress; |
5220 | } |
5221 | /********************** From the file "table.c" ****************************/ |
5222 | /* |
5223 | ** All code in this file has been automatically generated |
5224 | ** from a specification in the file |
5225 | ** "table.q" |
5226 | ** by the associative array code building program "aagen". |
5227 | ** Do not edit this file! Instead, edit the specification |
5228 | ** file, then rerun aagen. |
5229 | */ |
5230 | /* |
5231 | ** Code for processing tables in the LEMON parser generator. |
5232 | */ |
5233 | |
5234 | PRIVATE unsigned strhash(const char *x) |
5235 | { |
5236 | unsigned h = 0; |
5237 | while( *x ) h = h*13 + *(x++); |
5238 | return h; |
5239 | } |
5240 | |
5241 | /* Works like strdup, sort of. Save a string in malloced memory, but |
5242 | ** keep strings in a table so that the same string is not in more |
5243 | ** than one place. |
5244 | */ |
5245 | const char *Strsafe(const char *y) |
5246 | { |
5247 | const char *z; |
5248 | char *cpy; |
5249 | |
5250 | if( y==0 ) return 0; |
5251 | z = Strsafe_find(y); |
5252 | if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)((int)strlen(y))+1 ))!=0 ){ |
5253 | lemon_strcpy(cpy,y); |
5254 | z = cpy; |
5255 | Strsafe_insert(z); |
5256 | } |
5257 | MemoryCheck(z)if((z)==0){ extern void memory_error(); memory_error(); }; |
5258 | return z; |
5259 | } |
5260 | |
5261 | /* There is one instance of the following structure for each |
5262 | ** associative array of type "x1". |
5263 | */ |
5264 | struct s_x1 { |
5265 | int size; /* The number of available slots. */ |
5266 | /* Must be a power of 2 greater than or */ |
5267 | /* equal to 1 */ |
5268 | int count; /* Number of currently slots filled */ |
5269 | struct s_x1node *tbl; /* The data stored here */ |
5270 | struct s_x1node **ht; /* Hash table for lookups */ |
5271 | }; |
5272 | |
5273 | /* There is one instance of this structure for every data element |
5274 | ** in an associative array of type "x1". |
5275 | */ |
5276 | typedef struct s_x1node { |
5277 | const char *data; /* The data */ |
5278 | struct s_x1node *next; /* Next entry with the same hash */ |
5279 | struct s_x1node **from; /* Previous link */ |
5280 | } x1node; |
5281 | |
5282 | /* There is only one instance of the array, which is the following */ |
5283 | static struct s_x1 *x1a; |
5284 | |
5285 | /* Allocate a new associative array */ |
5286 | void Strsafe_init(void){ |
5287 | if( x1a ) return; |
5288 | x1a = (struct s_x1*)malloc( sizeof(struct s_x1) ); |
5289 | if( x1a ){ |
5290 | x1a->size = 1024; |
5291 | x1a->count = 0; |
5292 | x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*)); |
5293 | if( x1a->tbl==0 ){ |
5294 | free(x1a); |
5295 | x1a = 0; |
5296 | }else{ |
5297 | int i; |
5298 | x1a->ht = (x1node**)&(x1a->tbl[1024]); |
5299 | for(i=0; i<1024; i++) x1a->ht[i] = 0; |
5300 | } |
5301 | } |
5302 | } |
5303 | /* Insert a new record into the array. Return TRUE if successful. |
5304 | ** Prior data with the same key is NOT overwritten */ |
5305 | int Strsafe_insert(const char *data) |
5306 | { |
5307 | x1node *np; |
5308 | unsigned h; |
5309 | unsigned ph; |
5310 | |
5311 | if( x1a==0 ) return 0; |
5312 | ph = strhash(data); |
5313 | h = ph & (x1a->size-1); |
5314 | np = x1a->ht[h]; |
5315 | while( np ){ |
5316 | if( strcmp(np->data,data)==0 ){ |
5317 | /* An existing entry with the same key is found. */ |
5318 | /* Fail because overwrite is not allows. */ |
5319 | return 0; |
5320 | } |
5321 | np = np->next; |
5322 | } |
5323 | if( x1a->count>=x1a->size ){ |
5324 | /* Need to make the hash table bigger */ |
5325 | int i,arrSize; |
5326 | struct s_x1 array; |
5327 | array.size = arrSize = x1a->size*2; |
5328 | array.count = x1a->count; |
5329 | array.tbl = (x1node*)calloc(arrSize, sizeof(x1node) + sizeof(x1node*)); |
5330 | if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
5331 | array.ht = (x1node**)&(array.tbl[arrSize]); |
5332 | for(i=0; i<arrSize; i++) array.ht[i] = 0; |
5333 | for(i=0; i<x1a->count; i++){ |
5334 | x1node *oldnp, *newnp; |
5335 | oldnp = &(x1a->tbl[i]); |
5336 | h = strhash(oldnp->data) & (arrSize-1); |
5337 | newnp = &(array.tbl[i]); |
5338 | if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
5339 | newnp->next = array.ht[h]; |
5340 | newnp->data = oldnp->data; |
5341 | newnp->from = &(array.ht[h]); |
5342 | array.ht[h] = newnp; |
5343 | } |
5344 | /* free(x1a->tbl); // This program was originally for 16-bit machines. |
5345 | ** Don't worry about freeing memory on modern platforms. */ |
5346 | *x1a = array; |
5347 | } |
5348 | /* Insert the new data */ |
5349 | h = ph & (x1a->size-1); |
5350 | np = &(x1a->tbl[x1a->count++]); |
5351 | np->data = data; |
5352 | if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next); |
5353 | np->next = x1a->ht[h]; |
5354 | x1a->ht[h] = np; |
5355 | np->from = &(x1a->ht[h]); |
5356 | return 1; |
5357 | } |
5358 | |
5359 | /* Return a pointer to data assigned to the given key. Return NULL |
5360 | ** if no such key. */ |
5361 | const char *Strsafe_find(const char *key) |
5362 | { |
5363 | unsigned h; |
5364 | x1node *np; |
5365 | |
5366 | if( x1a==0 ) return 0; |
5367 | h = strhash(key) & (x1a->size-1); |
5368 | np = x1a->ht[h]; |
5369 | while( np ){ |
5370 | if( strcmp(np->data,key)==0 ) break; |
5371 | np = np->next; |
5372 | } |
5373 | return np ? np->data : 0; |
5374 | } |
5375 | |
5376 | /* Return a pointer to the (terminal or nonterminal) symbol "x". |
5377 | ** Create a new symbol if this is the first time "x" has been seen. |
5378 | */ |
5379 | struct symbol *Symbol_new(const char *x) |
5380 | { |
5381 | struct symbol *sp; |
5382 | |
5383 | sp = Symbol_find(x); |
5384 | if( sp==0 ){ |
5385 | sp = (struct symbol *)calloc(1, sizeof(struct symbol) ); |
5386 | MemoryCheck(sp)if((sp)==0){ extern void memory_error(); memory_error(); }; |
5387 | sp->name = Strsafe(x); |
5388 | sp->type = ISUPPER(*x)((*__ctype_b_loc ())[(int) (((unsigned char)(*x)))] & (unsigned short int) _ISupper) ? TERMINAL : NONTERMINAL; |
5389 | sp->rule = 0; |
5390 | sp->fallback = 0; |
5391 | sp->prec = -1; |
5392 | sp->assoc = UNK; |
5393 | sp->firstset = 0; |
5394 | sp->lambda = LEMON_FALSE; |
5395 | sp->destructor = 0; |
5396 | sp->destLineno = 0; |
5397 | sp->datatype = 0; |
5398 | sp->useCnt = 0; |
5399 | Symbol_insert(sp,sp->name); |
5400 | } |
5401 | sp->useCnt++; |
5402 | return sp; |
5403 | } |
5404 | |
5405 | /* Compare two symbols for sorting purposes. Return negative, |
5406 | ** zero, or positive if a is less then, equal to, or greater |
5407 | ** than b. |
5408 | ** |
5409 | ** Symbols that begin with upper case letters (terminals or tokens) |
5410 | ** must sort before symbols that begin with lower case letters |
5411 | ** (non-terminals). And MULTITERMINAL symbols (created using the |
5412 | ** %token_class directive) must sort at the very end. Other than |
5413 | ** that, the order does not matter. |
5414 | ** |
5415 | ** We find experimentally that leaving the symbols in their original |
5416 | ** order (the order they appeared in the grammar file) gives the |
5417 | ** smallest parser tables in SQLite. |
5418 | */ |
5419 | int Symbolcmpp(const void *_a, const void *_b) |
5420 | { |
5421 | const struct symbol *a = *(const struct symbol **) _a; |
5422 | const struct symbol *b = *(const struct symbol **) _b; |
5423 | int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1; |
5424 | int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1; |
5425 | return i1==i2 ? a->index - b->index : i1 - i2; |
5426 | } |
5427 | |
5428 | /* There is one instance of the following structure for each |
5429 | ** associative array of type "x2". |
5430 | */ |
5431 | struct s_x2 { |
5432 | int size; /* The number of available slots. */ |
5433 | /* Must be a power of 2 greater than or */ |
5434 | /* equal to 1 */ |
5435 | int count; /* Number of currently slots filled */ |
5436 | struct s_x2node *tbl; /* The data stored here */ |
5437 | struct s_x2node **ht; /* Hash table for lookups */ |
5438 | }; |
5439 | |
5440 | /* There is one instance of this structure for every data element |
5441 | ** in an associative array of type "x2". |
5442 | */ |
5443 | typedef struct s_x2node { |
5444 | struct symbol *data; /* The data */ |
5445 | const char *key; /* The key */ |
5446 | struct s_x2node *next; /* Next entry with the same hash */ |
5447 | struct s_x2node **from; /* Previous link */ |
5448 | } x2node; |
5449 | |
5450 | /* There is only one instance of the array, which is the following */ |
5451 | static struct s_x2 *x2a; |
5452 | |
5453 | /* Allocate a new associative array */ |
5454 | void Symbol_init(void){ |
5455 | if( x2a ) return; |
5456 | x2a = (struct s_x2*)malloc( sizeof(struct s_x2) ); |
5457 | if( x2a ){ |
5458 | x2a->size = 128; |
5459 | x2a->count = 0; |
5460 | x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*)); |
5461 | if( x2a->tbl==0 ){ |
5462 | free(x2a); |
5463 | x2a = 0; |
5464 | }else{ |
5465 | int i; |
5466 | x2a->ht = (x2node**)&(x2a->tbl[128]); |
5467 | for(i=0; i<128; i++) x2a->ht[i] = 0; |
5468 | } |
5469 | } |
5470 | } |
5471 | /* Insert a new record into the array. Return TRUE if successful. |
5472 | ** Prior data with the same key is NOT overwritten */ |
5473 | int Symbol_insert(struct symbol *data, const char *key) |
5474 | { |
5475 | x2node *np; |
5476 | unsigned h; |
5477 | unsigned ph; |
5478 | |
5479 | if( x2a==0 ) return 0; |
5480 | ph = strhash(key); |
5481 | h = ph & (x2a->size-1); |
5482 | np = x2a->ht[h]; |
5483 | while( np ){ |
5484 | if( strcmp(np->key,key)==0 ){ |
5485 | /* An existing entry with the same key is found. */ |
5486 | /* Fail because overwrite is not allows. */ |
5487 | return 0; |
5488 | } |
5489 | np = np->next; |
5490 | } |
5491 | if( x2a->count>=x2a->size ){ |
5492 | /* Need to make the hash table bigger */ |
5493 | int i,arrSize; |
5494 | struct s_x2 array; |
5495 | array.size = arrSize = x2a->size*2; |
5496 | array.count = x2a->count; |
5497 | array.tbl = (x2node*)calloc(arrSize, sizeof(x2node) + sizeof(x2node*)); |
5498 | if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
5499 | array.ht = (x2node**)&(array.tbl[arrSize]); |
5500 | for(i=0; i<arrSize; i++) array.ht[i] = 0; |
5501 | for(i=0; i<x2a->count; i++){ |
5502 | x2node *oldnp, *newnp; |
5503 | oldnp = &(x2a->tbl[i]); |
5504 | h = strhash(oldnp->key) & (arrSize-1); |
5505 | newnp = &(array.tbl[i]); |
5506 | if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
5507 | newnp->next = array.ht[h]; |
5508 | newnp->key = oldnp->key; |
5509 | newnp->data = oldnp->data; |
5510 | newnp->from = &(array.ht[h]); |
5511 | array.ht[h] = newnp; |
5512 | } |
5513 | /* free(x2a->tbl); // This program was originally written for 16-bit |
5514 | ** machines. Don't worry about freeing this trivial amount of memory |
5515 | ** on modern platforms. Just leak it. */ |
5516 | *x2a = array; |
5517 | } |
5518 | /* Insert the new data */ |
5519 | h = ph & (x2a->size-1); |
5520 | np = &(x2a->tbl[x2a->count++]); |
5521 | np->key = key; |
5522 | np->data = data; |
5523 | if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next); |
5524 | np->next = x2a->ht[h]; |
5525 | x2a->ht[h] = np; |
5526 | np->from = &(x2a->ht[h]); |
5527 | return 1; |
5528 | } |
5529 | |
5530 | /* Return a pointer to data assigned to the given key. Return NULL |
5531 | ** if no such key. */ |
5532 | struct symbol *Symbol_find(const char *key) |
5533 | { |
5534 | unsigned h; |
5535 | x2node *np; |
5536 | |
5537 | if( x2a==0 ) return 0; |
5538 | h = strhash(key) & (x2a->size-1); |
5539 | np = x2a->ht[h]; |
5540 | while( np ){ |
5541 | if( strcmp(np->key,key)==0 ) break; |
5542 | np = np->next; |
5543 | } |
5544 | return np ? np->data : 0; |
5545 | } |
5546 | |
5547 | /* Return the n-th data. Return NULL if n is out of range. */ |
5548 | struct symbol *Symbol_Nth(int n) |
5549 | { |
5550 | struct symbol *data; |
5551 | if( x2a && n>0 && n<=x2a->count ){ |
5552 | data = x2a->tbl[n-1].data; |
5553 | }else{ |
5554 | data = 0; |
5555 | } |
5556 | return data; |
5557 | } |
5558 | |
5559 | /* Return the size of the array */ |
5560 | int Symbol_count() |
5561 | { |
5562 | return x2a ? x2a->count : 0; |
5563 | } |
5564 | |
5565 | /* Return an array of pointers to all data in the table. |
5566 | ** The array is obtained from malloc. Return NULL if memory allocation |
5567 | ** problems, or if the array is empty. */ |
5568 | struct symbol **Symbol_arrayof() |
5569 | { |
5570 | struct symbol **array; |
5571 | int i,arrSize; |
5572 | if( x2a==0 ) return 0; |
5573 | arrSize = x2a->count; |
5574 | array = (struct symbol **)calloc(arrSize, sizeof(struct symbol *)); |
5575 | if( array ){ |
5576 | for(i=0; i<arrSize; i++) array[i] = x2a->tbl[i].data; |
5577 | } |
5578 | return array; |
5579 | } |
5580 | |
5581 | /* Compare two configurations */ |
5582 | int Configcmp(const char *_a,const char *_b) |
5583 | { |
5584 | const struct config *a = (struct config *) _a; |
5585 | const struct config *b = (struct config *) _b; |
5586 | int x; |
5587 | x = a->rp->index - b->rp->index; |
5588 | if( x==0 ) x = a->dot - b->dot; |
5589 | return x; |
5590 | } |
5591 | |
5592 | /* Compare two states */ |
5593 | PRIVATE int statecmp(struct config *a, struct config *b) |
5594 | { |
5595 | int rc; |
5596 | for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){ |
5597 | rc = a->rp->index - b->rp->index; |
5598 | if( rc==0 ) rc = a->dot - b->dot; |
5599 | } |
5600 | if( rc==0 ){ |
5601 | if( a ) rc = 1; |
5602 | if( b ) rc = -1; |
5603 | } |
5604 | return rc; |
5605 | } |
5606 | |
5607 | /* Hash a state */ |
5608 | PRIVATE unsigned statehash(struct config *a) |
5609 | { |
5610 | unsigned h=0; |
5611 | while( a ){ |
5612 | h = h*571 + a->rp->index*37 + a->dot; |
5613 | a = a->bp; |
5614 | } |
5615 | return h; |
5616 | } |
5617 | |
5618 | /* Allocate a new state structure */ |
5619 | struct state *State_new() |
5620 | { |
5621 | struct state *newstate; |
5622 | newstate = (struct state *)calloc(1, sizeof(struct state) ); |
5623 | MemoryCheck(newstate)if((newstate)==0){ extern void memory_error(); memory_error() ; }; |
5624 | return newstate; |
5625 | } |
5626 | |
5627 | /* There is one instance of the following structure for each |
5628 | ** associative array of type "x3". |
5629 | */ |
5630 | struct s_x3 { |
5631 | int size; /* The number of available slots. */ |
5632 | /* Must be a power of 2 greater than or */ |
5633 | /* equal to 1 */ |
5634 | int count; /* Number of currently slots filled */ |
5635 | struct s_x3node *tbl; /* The data stored here */ |
5636 | struct s_x3node **ht; /* Hash table for lookups */ |
5637 | }; |
5638 | |
5639 | /* There is one instance of this structure for every data element |
5640 | ** in an associative array of type "x3". |
5641 | */ |
5642 | typedef struct s_x3node { |
5643 | struct state *data; /* The data */ |
5644 | struct config *key; /* The key */ |
5645 | struct s_x3node *next; /* Next entry with the same hash */ |
5646 | struct s_x3node **from; /* Previous link */ |
5647 | } x3node; |
5648 | |
5649 | /* There is only one instance of the array, which is the following */ |
5650 | static struct s_x3 *x3a; |
5651 | |
5652 | /* Allocate a new associative array */ |
5653 | void State_init(void){ |
5654 | if( x3a ) return; |
5655 | x3a = (struct s_x3*)malloc( sizeof(struct s_x3) ); |
5656 | if( x3a ){ |
5657 | x3a->size = 128; |
5658 | x3a->count = 0; |
5659 | x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*)); |
5660 | if( x3a->tbl==0 ){ |
5661 | free(x3a); |
5662 | x3a = 0; |
5663 | }else{ |
5664 | int i; |
5665 | x3a->ht = (x3node**)&(x3a->tbl[128]); |
5666 | for(i=0; i<128; i++) x3a->ht[i] = 0; |
5667 | } |
5668 | } |
5669 | } |
5670 | /* Insert a new record into the array. Return TRUE if successful. |
5671 | ** Prior data with the same key is NOT overwritten */ |
5672 | int State_insert(struct state *data, struct config *key) |
5673 | { |
5674 | x3node *np; |
5675 | unsigned h; |
5676 | unsigned ph; |
5677 | |
5678 | if( x3a==0 ) return 0; |
5679 | ph = statehash(key); |
5680 | h = ph & (x3a->size-1); |
5681 | np = x3a->ht[h]; |
5682 | while( np ){ |
5683 | if( statecmp(np->key,key)==0 ){ |
5684 | /* An existing entry with the same key is found. */ |
5685 | /* Fail because overwrite is not allows. */ |
5686 | return 0; |
5687 | } |
5688 | np = np->next; |
5689 | } |
5690 | if( x3a->count>=x3a->size ){ |
5691 | /* Need to make the hash table bigger */ |
5692 | int i,arrSize; |
5693 | struct s_x3 array; |
5694 | array.size = arrSize = x3a->size*2; |
5695 | array.count = x3a->count; |
5696 | array.tbl = (x3node*)calloc(arrSize, sizeof(x3node) + sizeof(x3node*)); |
5697 | if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
5698 | array.ht = (x3node**)&(array.tbl[arrSize]); |
5699 | for(i=0; i<arrSize; i++) array.ht[i] = 0; |
5700 | for(i=0; i<x3a->count; i++){ |
5701 | x3node *oldnp, *newnp; |
5702 | oldnp = &(x3a->tbl[i]); |
5703 | h = statehash(oldnp->key) & (arrSize-1); |
5704 | newnp = &(array.tbl[i]); |
5705 | if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
5706 | newnp->next = array.ht[h]; |
5707 | newnp->key = oldnp->key; |
5708 | newnp->data = oldnp->data; |
5709 | newnp->from = &(array.ht[h]); |
5710 | array.ht[h] = newnp; |
5711 | } |
5712 | free(x3a->tbl); |
5713 | *x3a = array; |
5714 | } |
5715 | /* Insert the new data */ |
5716 | h = ph & (x3a->size-1); |
5717 | np = &(x3a->tbl[x3a->count++]); |
5718 | np->key = key; |
5719 | np->data = data; |
5720 | if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next); |
5721 | np->next = x3a->ht[h]; |
5722 | x3a->ht[h] = np; |
5723 | np->from = &(x3a->ht[h]); |
5724 | return 1; |
5725 | } |
5726 | |
5727 | /* Return a pointer to data assigned to the given key. Return NULL |
5728 | ** if no such key. */ |
5729 | struct state *State_find(struct config *key) |
5730 | { |
5731 | unsigned h; |
5732 | x3node *np; |
5733 | |
5734 | if( x3a==0 ) return 0; |
5735 | h = statehash(key) & (x3a->size-1); |
5736 | np = x3a->ht[h]; |
5737 | while( np ){ |
5738 | if( statecmp(np->key,key)==0 ) break; |
5739 | np = np->next; |
5740 | } |
5741 | return np ? np->data : 0; |
5742 | } |
5743 | |
5744 | /* Return an array of pointers to all data in the table. |
5745 | ** The array is obtained from malloc. Return NULL if memory allocation |
5746 | ** problems, or if the array is empty. */ |
5747 | struct state **State_arrayof(void) |
5748 | { |
5749 | struct state **array; |
5750 | int i,arrSize; |
5751 | if( x3a==0 ) return 0; |
5752 | arrSize = x3a->count; |
5753 | array = (struct state **)calloc(arrSize, sizeof(struct state *)); |
5754 | if( array ){ |
5755 | for(i=0; i<arrSize; i++) array[i] = x3a->tbl[i].data; |
5756 | } |
5757 | return array; |
5758 | } |
5759 | |
5760 | /* Hash a configuration */ |
5761 | PRIVATE unsigned confighash(struct config *a) |
5762 | { |
5763 | unsigned h=0; |
5764 | h = h*571 + a->rp->index*37 + a->dot; |
5765 | return h; |
5766 | } |
5767 | |
5768 | /* There is one instance of the following structure for each |
5769 | ** associative array of type "x4". |
5770 | */ |
5771 | struct s_x4 { |
5772 | int size; /* The number of available slots. */ |
5773 | /* Must be a power of 2 greater than or */ |
5774 | /* equal to 1 */ |
5775 | int count; /* Number of currently slots filled */ |
5776 | struct s_x4node *tbl; /* The data stored here */ |
5777 | struct s_x4node **ht; /* Hash table for lookups */ |
5778 | }; |
5779 | |
5780 | /* There is one instance of this structure for every data element |
5781 | ** in an associative array of type "x4". |
5782 | */ |
5783 | typedef struct s_x4node { |
5784 | struct config *data; /* The data */ |
5785 | struct s_x4node *next; /* Next entry with the same hash */ |
5786 | struct s_x4node **from; /* Previous link */ |
5787 | } x4node; |
5788 | |
5789 | /* There is only one instance of the array, which is the following */ |
5790 | static struct s_x4 *x4a; |
5791 | |
5792 | /* Allocate a new associative array */ |
5793 | void Configtable_init(void){ |
5794 | if( x4a ) return; |
5795 | x4a = (struct s_x4*)malloc( sizeof(struct s_x4) ); |
5796 | if( x4a ){ |
5797 | x4a->size = 64; |
5798 | x4a->count = 0; |
5799 | x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*)); |
5800 | if( x4a->tbl==0 ){ |
5801 | free(x4a); |
5802 | x4a = 0; |
5803 | }else{ |
5804 | int i; |
5805 | x4a->ht = (x4node**)&(x4a->tbl[64]); |
5806 | for(i=0; i<64; i++) x4a->ht[i] = 0; |
5807 | } |
5808 | } |
5809 | } |
5810 | /* Insert a new record into the array. Return TRUE if successful. |
5811 | ** Prior data with the same key is NOT overwritten */ |
5812 | int Configtable_insert(struct config *data) |
5813 | { |
5814 | x4node *np; |
5815 | unsigned h; |
5816 | unsigned ph; |
5817 | |
5818 | if( x4a==0 ) return 0; |
5819 | ph = confighash(data); |
5820 | h = ph & (x4a->size-1); |
5821 | np = x4a->ht[h]; |
5822 | while( np ){ |
5823 | if( Configcmp((const char *) np->data,(const char *) data)==0 ){ |
5824 | /* An existing entry with the same key is found. */ |
5825 | /* Fail because overwrite is not allows. */ |
5826 | return 0; |
5827 | } |
5828 | np = np->next; |
5829 | } |
5830 | if( x4a->count>=x4a->size ){ |
5831 | /* Need to make the hash table bigger */ |
5832 | int i,arrSize; |
5833 | struct s_x4 array; |
5834 | array.size = arrSize = x4a->size*2; |
5835 | array.count = x4a->count; |
5836 | array.tbl = (x4node*)calloc(arrSize, sizeof(x4node) + sizeof(x4node*)); |
5837 | if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
5838 | array.ht = (x4node**)&(array.tbl[arrSize]); |
5839 | for(i=0; i<arrSize; i++) array.ht[i] = 0; |
5840 | for(i=0; i<x4a->count; i++){ |
5841 | x4node *oldnp, *newnp; |
5842 | oldnp = &(x4a->tbl[i]); |
5843 | h = confighash(oldnp->data) & (arrSize-1); |
5844 | newnp = &(array.tbl[i]); |
5845 | if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
5846 | newnp->next = array.ht[h]; |
5847 | newnp->data = oldnp->data; |
5848 | newnp->from = &(array.ht[h]); |
5849 | array.ht[h] = newnp; |
5850 | } |
5851 | /* free(x4a->tbl); // This code was originally written for 16-bit machines. |
5852 | ** on modern machines, don't worry about freeing this trival amount of |
5853 | ** memory. */ |
5854 | *x4a = array; |
5855 | } |
5856 | /* Insert the new data */ |
5857 | h = ph & (x4a->size-1); |
5858 | np = &(x4a->tbl[x4a->count++]); |
5859 | np->data = data; |
5860 | if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next); |
5861 | np->next = x4a->ht[h]; |
5862 | x4a->ht[h] = np; |
5863 | np->from = &(x4a->ht[h]); |
5864 | return 1; |
5865 | } |
5866 | |
5867 | /* Return a pointer to data assigned to the given key. Return NULL |
5868 | ** if no such key. */ |
5869 | struct config *Configtable_find(struct config *key) |
5870 | { |
5871 | int h; |
5872 | x4node *np; |
5873 | |
5874 | if( x4a==0 ) return 0; |
5875 | h = confighash(key) & (x4a->size-1); |
5876 | np = x4a->ht[h]; |
5877 | while( np ){ |
5878 | if( Configcmp((const char *) np->data,(const char *) key)==0 ) break; |
5879 | np = np->next; |
5880 | } |
5881 | return np ? np->data : 0; |
5882 | } |
5883 | |
5884 | /* Remove all data from the table. Pass each data to the function "f" |
5885 | ** as it is removed. ("f" may be null to avoid this step.) */ |
5886 | void Configtable_clear(int(*f)(struct config *)) |
5887 | { |
5888 | int i; |
5889 | if( x4a==0 || x4a->count==0 ) return; |
5890 | if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data); |
5891 | for(i=0; i<x4a->size; i++) x4a->ht[i] = 0; |
5892 | x4a->count = 0; |
5893 | return; |
5894 | } |